• Title/Summary/Keyword: 막장볼트

Search Result 15, Processing Time 0.016 seconds

A Laboratory Test and Numerical Analysis to Determine the Number of Additional Installation of Face Bolts due to the Deviated Bolts from the Horizontal Direction (막장볼트가 수평으로부터 벗어나는 경우 추가해 주어야 하는 본수에 대한 실내실험 및 수치해석)

  • Seo, Kyoung-Won;Lee, Sung-Won;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • During installation of face bolts, they are often deviated from the designed horizontal direction. In this study, a laboratory test and numerical analysis were conducted to examine the change of support effect by them. Also, the number of bolts to be added for achieving the designed support effect was considered. It was verified in this study that the horizontal installation is more effective. Under the test condition of this study, 1.5 bolts/section should be added in the face of which the installation density was 3 bolts/section when the bolts were installed with $R15^{\circ}$ angle from the horizontal position.

A Study of the Optimum Installation Number of Face Bolts Using Laboratory Tests and Numerical Analysis (실내실험 및 수치해석을 이용한 막장볼트의 최적 타설 개수에 관한 연구)

  • Seo, Kyoung-Won;Kazuo, Nishimurn;Kim, Chang-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.467-475
    • /
    • 2006
  • The use of face bolt method has been increasing abroad recently. Hence, many tests and measurements are being conducted and reported. Also, it is well hewn that determination of the installation number of foe bolts in the design stage is very difficult due to difference of the ground condition and the type of a bolt to be used. First of all, the type, the number, etc. of bolts used in various tunnel construction sites, investigated, are analyzed. The relationship between bolt and ground condition could not be found because bolts have been used with the other support methods in many cases. In the laboratory test and numerical analysis based on the site investigation, the behavior of ground and pipes installed on the tunnel face to support has been examined. Especially, the installed number is focused on. According to the result of tests, the surface settlement and the axial displacement of the face decrease exponentially as the number of installed bolts increases.

A comparative analysis of prediction and measurement for reinforcement effect of face bolts (수치해석 및 계측자료 분석을 통한 막장볼트의 보강효과에 관한 연구)

  • Seo, Kyoung-Won;Kim, Woong-Ku;Baek, Ki-Hyun;Kim, Jin-Woung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.359-368
    • /
    • 2010
  • Unlike in Korea where steel pipe-reinforced multistep grouting is of commonly used methods for tunnel reinforcement, face bolt method is more widely used due to its better workability and lower construction cost in other countries. In this paper, the effects of both methods after tunnel failure were numerically analyzed and verified based on the oversea construction experiences. As a result it is concluded that the face bolt method may be effective to reinforcement especially when there are some fractured zones developed in the face of tunnel.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

A study on the evaluation method and reinforcement effect of face bolt for the stability of a tunnel face by a three dimensional numerical analysis (터널막장안정 평가기법 및 막장볼트의 보강효과에 관한 수치해석적 연구)

  • Kim, Sung-ryul;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2009
  • Tunnel excavation with several sections and appropriate auxiliary measures such as face bolt and pre-grouting are widely used in case of weak and less rigid ground for the stability of a tunnel face during excavation. This papers first described the evaluation methods proposed in technical literature to maintain the tunnel face stable, and then studied by FEM analysis whether face reinforcement is need in what degree of ground deformation and strength features for the stability of a tunnel face when excavating by full excavation with sub-bench. Lastly, a three dimensional FEM analysis was performed to study how the tunnel face itself and the ground around the tunnel behave depending on different bolt layouts, length of bolts, number of bolts. There were relative differences in comparison of results on the stability of a tunnel face by a theoretical evaluation methods and FEM analysis, but the same in reinforced effect of face. It was found that the stability of a tunnel face can be obtained with face bolt installed longer than 1.0D (tunnel width), bolt density of about 1 bolt per every $1.5\;m^2$ (layout of grid type), and reinforcement area of $120^{\circ}$ arch area of upper section.

A Study of effective installation patterns of face bolts using 3D-FDM analysis (터널 안정화를 위한 페이스볼트의 효율적 배치에 관한 수치해석적 연구)

  • Seo, Kyoung-Won;Bae, Gyu-Jin;Nishimura, Kazuo;Domon, Tsuyoshi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.141-149
    • /
    • 2006
  • For application of NATM, the self-supporting until installation of the supporting system must be satisfied. However, the face of a tunnel are always unsupported and therefore it is fairly vulnerable to tunnel collapses. Face blots are well known and widely used to prevent the deformation of the tunnel face and its circumference, which are installed horizontally toward the tunnel axis generally. To maximize the supporting effect of face bolts, this study has analysed the effective design patterns of face bolts by changing their installation angles. As the conclusion, it has been found that the axial displacement of the face increases slightly by installing the outermost bolts upward from the axis but surface settlement at 2.5D behind the face decreases up to 18%.

  • PDF

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

Field Experiment on the Optimization of Concave-Shaped Face Development for Rapid Tunnel-Whole-Face Excavation (대단면 급속시공을 위한 최적의 곡면막장형상개발에 관한 현장실험)

  • Kim, Tae-hyoung;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • In this study, NATM can reduce the loosened ground near the tunnel face more than the other pre-existing tunnelling methods, because of rapid supporting by means of shotcrete and rock bolts. However, this method sometimes can not help for a unstable tunnel face with a unsupported caondition. In order to keep from that dangerous case, some excavation methods such as bench cut and drift advancing method are introduced, despite of high construction cost and period. So, this thesis is intended to introduce the new tunnel face shape, that is concave shaped face, and discusses its effects on the tunnel stabilization.

  • PDF

Laboratory and Numerical Simulation About the Installation Angle of Face Bolts (페이스볼트의 타설각도가 보강효과에 미치는 영향 분석)

  • Seo, Kyoung-Won;Nishimura, Kazuo;Kim, Kwang-Yeom;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.131-138
    • /
    • 2006
  • A face bolt is normally horizontally installed. However, it often deviates from the initial horizontal position. The reinforcement effect of face bolts by its installation angle is analysed in this study. For the purpose of preventing surface subsidence and horizontal displacement of face, the face bolt should be installed as horizontally as possible, and if it deviates from the initial position, more bolts should be installed. Also, the residual face bolt left behind the face due to its installation angle has little supportive effect because it its too short and radially arranged.

Stability Analysis on the Intersection Area of Subway Tunnels by Observational Method (계측에 의한 지하철터널 교차부의 안정성 검토)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.71-79
    • /
    • 2005
  • The stability of the intersection area of two tunnels is analyzed by observational method. The depth from ground surface to the intersected area is shallow and the geology around the area consists of soil and/or weathered rock. The tunnel is supported by reinforced protective umbrella method with 12 m long 3-layer steel-pipes and the intersected area is additionally reinforced with 6 m long rockbolts. The measured displacements are converged and mechanical stability of the intersected area of two tunnels is confirmed; tunnel arch settles to 6-7 mm at the crown and the sidewalls converges to about 5 mm. So based on the displacement measurements, the supporting system for the tunnel intersection proves to be effective to not only reduce the deformation of tunnels but also maintain the stability of tunnels.