• Title/Summary/Keyword: 막열화

Search Result 185, Processing Time 0.031 seconds

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils (탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과)

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

TCO 박막의 결정 구조 및 표면 특성에 따른 OLED 소자의 특성

  • Lee, Bong-Geun;Lee, Yu-Rim;Lee, Gyu-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.183-183
    • /
    • 2009
  • OLED소자의 양극재료로써 현재는 산화인듐주석(ITO : indium tin oxide) 박막이 널리 이용되고 있다. 그러나 낮은 전기 비저항과 높은 투과도를 갖는 ITO 박막을 얻기 위해서는 $300^{\circ}C$ 이상의 고온에서 성막되어야 하며, 원료 물질인 인듐의 수급량 부족으로 인한 문제점과 독성, 저온증착의 어려움, 스퍼터링 시 음이온 충격에 의한 막 손상으로 저항의 증가의 문제점이 있고, 또한 유기발광소자의 투명전극으로 쓰일 경우에 유기물과의 계면 부적합성, 액정디스플레이의 투명전극으로 사용될 경우에 $400^{\circ}C$정도의 놓은 온도와 수소 플라즈마 분위기에서 장시간 노출 시 열화로 인한 광학적 특성변화가 문제가 된다. 이러한 문제점을 지닌 ITO 박막을 대체할 수 있는 물질로 산화 인듐아연(lZO) 박막이 많은 각광을 받고 있다. IZO(Indium Zinc Oxide) 박막은 저온 ($100^{\circ}C$ 이상)에서 증착이 가능하고 추가적인 열처리 없이도 가시광 영역에서 90% 이상의 광 투과도와 ${\sim}10^{-4}{\Omega}cm$ 이하의 낳은 전기 비저항을 갖는 것으로 알려져 있다. 이러한 IZO박막은 성막 후 고온의 열처리 과정이 필요 없기 때문에 폴리카보네이트와 같은 유기물 기판을 사용하여 제작 가능한 유연한 평판형 표시 소자의 제작에도 적용될 수 있다. IZO(Indium Zinc Oxide) 박막은 상온 공정에서도 우수한 전기적, 광학적, 표면 특성을 나타낼 뿐만 아니라 양극재료로써 높은 일함수를 가지고 있어 고효율의 유기 발광 소자를 구현하는데 유리한 재료라 판단된다. 본 연구에서는 TCO 박막의 면 저항과 표면 거칠기가 OLED 소자의 성능에 미치는 영향을 조사하였다. R.F Magnetron Sputtering을 이용하여 투명 전도막을 성막 형성 하였으며, 기판온도와 증착과정에서 주입되는 산소, 수소의 유랑 변화가 박막의 구조적, 전기적 특성에 어떠한 영향 미치는 것인가를 자세히 규명하였다 ITO 와 IZO박막은 챔버 내 다양한 가스 분위기(Ar, $Ar+O_2$ and $Ar+H_2$) 에서 R.F Magnetron Sputtering 방법으로 증착했다. TCO박막의 구조적인 이해를 돕기 위해서 X-ray diffraction 과 FESEM으로 분석했다. 광학적 투과도와 박막의 두께는 Ultraviolet Spectrophotometer(Varian, cary-500)와 Surface profile mersurement system으로 각각 측정하였다. 면저항, charge carrier농도, 그리고 TCO박막의 이동성과 길은 전기적특성은 Four-point probe와 Hall Effect Measurement(HMS-3000)로 각각 측정한다. TCO 박막의 표면 거칠기에 따른 OLED소자의 성능분석 측면에서는 TCO 박막의 표면 거칠기 조절을 위해 photo lithography 공정을 사용하여 TCO 박막을 에칭 하였다. 미세사이즈 패턴 마스크가 사용되고 에칭의 깊이는 에칭시간에 따라 조절한다. TCO박막의 표면 형태는 FESEM과 AFM으로 관찰하고 그리고 나서 유기메탈과 음극 전극을 연속적으로 TCO 박막위에 증착한다. 투명전극으로 사용되는 IZO기판 상용화를 위해 IZO기판 위에 $\alpha$-NPB, Alq3, LiF, Al순서로 OLED소자를 제작하였다. 전류밀도와 전압 그리고 발광과 OLED소자의 전압과 같은 전기적 특성은 Spectrometer (minolta CS-1000A) 에 의하여 I-V-L분석을 했다.

  • PDF

The Effects of Electrode Materials on the Electrical Properties of $Ta_2O_5$ Thin Film for DRAM Capacitor (DRAM 커패시터용 $Ta_2O_5$ 박막의 전기적 특성에 미치는 전극의존성)

  • Kim, Yeong-Wook;Gwon, Gi-Won;Ha, Jeong-Min;Kang, Chang-Seog;Seon, Yong-Bin;Kim, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.229-235
    • /
    • 1991
  • A new electrode material for $Ta_2O_5$ capacitor was developed to obtain both high dielectric constant and improved electrical properties for use in DRAM. High leakage current and low breakdown field of as-deposited $Ta_2O_5$ film on Si is due to the reduction of $Ta_2O_5$ by silicon at $Ta_2O_5$/electrode interface. $Dry-O_2$ anneal improves the electrical properties of $Ta_2O_5$ capacitor with Si electrode, but it thickens the interfacial oxide and lowers the dielectric constant, subsequently. $Ta_2O_5$ capacitor with TiN exectrode shows better electrical properties and higher dielectric constant than post heat treated $Ta_2O_5$ film on Si. No interfacial oxide layer at $Ta_2O_5$/TiN interface suggests that there\`s no Interaction between $Ta_2O_5$ and electrode. TiN is a adequate electrode material for $Ta_2O_5$ capacitor.

  • PDF

Non Thermal Process and Quality Changes of Foxtail Millet Yakju by Micro Filtration (미세여과에 의한 비 가열살균 좁쌀약주의 제조 및 저장 중 품질변화)

  • Kang, Young-Joo;Oh, Young-Ju;Koh, Jeong-Sam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.277-284
    • /
    • 2005
  • Micro-filtration (MF) or ultra-filtration (UF) system with hollow-fiber cartridge was introduced in order to improve the Quality level of commercial foxtail millet Yakju, which has an off-flavour and/or undesired colour after the thermal treatment. The filtration effects of cartridges such as MF (0.65, 0.45, 0.2, 0.1 $\mu$m) and UF (500 K dalton) were investigated. The physicochemical and sensory characteristics of the Yakju were then evaluated during the 6 months storage at room temperature. The exclusion ability of microorganism in samples was confirmed in all cartridges, but 0.45 pm MF-cartridge was suitable in the Yakju manufacture due to its superior filtration rate and efficiency. Changes in reducing sugar and colour difference of foxtail millet Yakju untreated or treated by heat ($65^{\circ}C$${\times}$10 min) were observed during the storage; after 6 months the L-value of thermal-treatment sample was decreased and its b-value, however, significantly increased so that its color became dark, in comparison to non-thermal treatment sample. This decrease of reducing sugar is assumed that color change is associated with non-enzymatic browning reaction. Sensory Quality of foxtail millet Yakju produced by non-thermal treatment was better than that of thermal treatment.

The reliability physics of SiGe hetero-junction bipolar transistors (실리콘-게르마늄 이종접합 바이폴라 트랜지스터의 신뢰성 현상)

  • 이승윤;박찬우;김상훈;이상흥;강진영;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.239-250
    • /
    • 2003
  • The reliability degradation phenomena in the SiGe hetero-junction bipolar transistor (HBT) are investigated in this review. In the case of the SiGe HBT the decrease of the current gain, the degradation of the AC characteristics, and the offset voltage are frequently observed, which are attributed to the emitter-base reverse bias voltage stress, the transient enhanced diffusion, and the deterioration of the base-collector junction due to the fluctuation in fabrication process, respectively. The reverse-bias stress on the emitter-base junction causes the recombination current to rise, increasing the base current and degrading the current gain, because hot carriers formed by the high electric field at the junction periphery generate charged traps at the silicon-oxide interface and within the oxide region. Because of the enhanced diffusion of the dopants in the intrinsic base induced by the extrinsic base implantation, the shorter distance between the emitter-base junction and the extrinsic base than a critical measure leads to the reduction of the cut-off frequency ($f_t$) of the device. If the energy of the extrinsic base implantation is insufficient, the turn-on voltage of the collector-base junction becomes low, in the result, the offset voltage appears on the current-voltage curve.

Modeling and Analysis of Fine Particle Behavior in Ar Plasma (모델링을 통한 Ar 플라즈마 중의 미립자 운동에 관한 연구)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • Recently, many researches for fine particles plasma have been focused on the fabrication of the new devices and materials in micro-electronic industry, although reduction or elimination of fine particles was interested in plasma processing until now on. In order to enhance their utilization, it is necessary to control and analyze fine particle behavior. Therefore, we developed simulation model of fine particles in RF Ar plasmas. This model consists of the calculation parts of plasma structure using a two-dimensional fluid model and of fine particle behavior. The motion of fine particles was derived from the charge amount on the fine particles and forces applied to them. In this paper, Ar plasma properties using two-dimensional fluid model without fine particles were calculated at power source voltage 15[V] and pressure 0.5[Torr]. Time-averaged spatial distributions of Ar plasma were shown. The process on the formation of Coulomb crystal of fine particles was investigated and it was explained by combination of ion drag and electrostatic forces. And also analysis on the forces of fine particles was presented.

Effect of Injection Stage of SF6 Gas Incorporation on the Limitation of Carbon Coils Geometries (육불화황 기체의 주입단계에 따른 탄소코일 기하구조의 제약)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.374-380
    • /
    • 2011
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils according to the injection stage of $SF_6$ gas incorporation were investigated. A continuous injecting of $SF_6$ gas flow could give rise to many types of carbon coils-related geometries, namely linear tub, micro-sized coil, nano-sized coil, and wave-like nano-sized coil. However, the limitation of the geometry as the nano-sized geometries of carbon coils could be achieved by the incorporation of $SF_6$ in a short time (1 min) during the initial deposition stage. A delayed injection of a short time $SF_6$ gas flow can deteriorate the limitation of the geometries. It confirms that the injection time and its starting point of $SF_6$ gas flow would be very important to determine the geometries of carbon coils.

The Evaluation for Reliability Characteristics of MOS Devices with Different Gate Materials by Plasma Etching Process (게이트 물질을 달리한 MOS소자의 플라즈마 피해에 대한 신뢰도 특성 분석)

  • 윤재석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.297-305
    • /
    • 2000
  • It is observed that the initial properties and degradation characteristics on plasma of n/p-MOSFET with polycide and poly-Si as different gate materials under F-N stress and hot electron stress are affected by metal AR(Antenna Ratio) during plasma process. Compared to that of MOS devices with poly-Si gate material, reliability properties on plasma of MOS devices with polycide gate material are improved. This can be explained by that fluorine of tungsten polycide process diffuses through poly-Si into gate oxide and results in additional oxide thickness. The fact that MOS devices with polycide gate material can reduce damages of plasma process shows possibility that polycide gate material can be used as gate material for next generation MOS devices.

  • PDF