TCO 박막의 결정 구조 및 표면 특성에 따른 OLED 소자의 특성

이봉근, 이윤영, 이규한
한국기술교육대학교 신소재공학과

Abstract : OLED소자의 양극재료로써 현재는 산화인듐주석(ITO : Indium tin oxide) 박막이 널리 이용되고 있다. 그러나 낮은 전기 비저항과 높은 투과도를 갖는 ITO 박막을 얻기 위해서는 300℃ 이상의 고온에서 성장하여야 하며, 원료 물질인 인듐의 수급량 부족으로 인한 문제점과 독성, 자음증상의 어려움, 스피드형식 응용에 의한 약 손상으로 사용하는 전기의 문제점이 있고, 또한 유기발광소자의 투명성으로 쓸 일이 경우에 유기물과의 연합 부적합성, 액정디스플레이의 투명성으로 사용될 경우에 400℃정도의 높은 온도와 수소 폴라제에 의한 문제가 된다. 이러한 문제점을 지닌 ITO박막을 대체할 수 있는 물질로 산화인듐주석(IZO) 박막이 많은 연구가 있다.

IZO(Indium Zinc Oxide) 박막은 차온(100℃ 이상)에서 증착이 가능하고 추가적인 염처리 없이도 가시광 영역에서 90% 이상의 광 투과도와 ~10⁻⁴Ωcm 이하의 낮은 전기 비저항을 갖는 것으로 알려져 있다. 이러한 IZO박막은 성숙 후 고온의 염처리 과정이 필요 없기 때문에 스플라이보네이트와 같은 유기물 기판을 사용하여 제작 가능한 유연한 평판형 표시 소자의 제작에도 적용될 수 있다. IZO(Indium Zinc Oxide) 박막은 상온 공정에서도 우수한 전기적, 광학적, 표면 특성을 나타낼 뿐만 아니라 양극재료로서 높은 밀도수용을 가지고 있어 효율적인 유기 발광 소자를 구현하는데 유리한 재료로 판단된다.


TCO박막의 표면 거칠기에 따른 OLED소자의 성능 분석 흐름에서는 TCO박막의 표면 거칠기 조절을 위해 photo lithography 공정을 사용하여 TCO박막을 제작하였다. 미세사이즈 패턴 마스크가 사용되고 예정의 깊이를 예정시간에 따라 조절한다. TCO박막의 표면 형태는 FESEM과 AFM으로 관찰하고 그리고 나서 유기매질과 유용 전극을 연속적으로 TCO박막위에 코팅한다. 트림짜에 의해서 IZO기판 성형을 위해 IZO기판 위에 α-NPB, Alq3, LiF, Al순서로 OLED소자를 제작하였다. 전류밀도와 전압 그리고 밀도와 OLED소자의 전압과 같은 전기적 특성을 Spectrometer (minolta CS-1000A)에 의하여 V=V-분석을 했다.

Key Words : OLED, TCO, IZO, ITO