• Title/Summary/Keyword: 막열화

Search Result 185, Processing Time 0.021 seconds

Effect of Electrode Degradation on the Membrane Degradation in PEMFC (PEMFC에서 전극 열화가 전해질 막 열화에 미치는 영향)

  • Song, Jinhoon;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. The effect of electrode degradation on membrane degradation was studied in this work. We compared membrane degradation after electrode degradation and membrane degradation without electrode degradation. I-V performance, hydrogen crossover current, fluoride emission rate (FER), impedance and TEM were measured after and before degradation of MEA. Electrode degradation reduced active area of Pt catalyst, and then radical/$H_2O_2$ evolution rate decreased on Pt. Decrease of radical/$H_2O_2$ reduced the velocity of membrane degradation.

Effect of Membrane Degradation on the Electrode Degradation in PEMFC (PEMFC에서 막 열화가 전극 열화에 미치는 영향)

  • Song, Jinhoon;Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.

Degradation Accelerated Stress Test of Electrode and Membrane in PEMFC (PEMFC에서 전극과 전해질 막의 열화 가속 시험)

  • Song, Jin-Hoon;Kim, Sae-Hoon;Ahn, Byung-Ki;Ko, Jai-Joon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.778-782
    • /
    • 2012
  • Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. Therefore in this work, AST (Accelerated Stress Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. There was interaction between membrane degradation and electrode degradation. Membrane degradation reduced the decrease range of catalyst active area by electrode degradation. Electrode degradation reduces increase range of the hydrogen crossover current and FER (Fluoride Emission Rate) by membrane degradation.

Performance change of Polymer electrode Membrane operating temperature (PEMFC 고분자 전해질막의 운전온도에 따른 성능변화)

  • Lee, Ho;Shin, Kang-Sup;Park, Kwon-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.180-182
    • /
    • 2007
  • PEMFC의 상용화 진입에 있어서 걸림돌 중의 하나가 열화(degradation)에 의한 성능감소이다. PEMFC 고분자 막의 열화가 PEMFC 성능 감소에 많은 영향을 미친다. 고분자 막의 성능 감소 원인은 여러가지가 있지만 무가습/OCV조건에서 성능 감소가 잘 된다. 그 이유에 대해서는 OCV/무가습 조건에서 과산화수소나 라디칼이 많이 형성될 수 있다는 것과, OCV조건에서 사용되지 못하는 수소와 산소의 gas-crossover 가 많기 때문이라는 것 그리고 무가습 조건에서 수소와 산소의 분압이 높아 gas-crossover 가 유리하고 악의 건조에 따른 물리적인 영향 등등이 거론되고 있다. 본 연구에서는 같은 조건에서 Cell 운전온도가 막열화에 미치는 영향을 실험하였다. OCV 여려 조건 에서 단위전지 실험을 한 후 I-V, 수소 투과도, 임피던스, FER(fluoride emission rate)등을 측정해 그 결과를 검토 분석하였다. OCV/Anode 무가습 조건이 알려진 대로 막열화 가속조건 이었음을 확인하였고, 실험 결과 Cell 운전온도가 $10^{\circ}C$증가 할 때마다 FER(fluroide emission rate)이 즉 막 열화속도가 약 2배정도 증가함을 보였다.

  • PDF

Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC (고분자전해질 연료전지에서 기체 크로마토그래프에 의한 수소투과도 측정)

  • Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.425-429
    • /
    • 2014
  • Until a recent day, degradation of PEMFC MEA(membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. Hydrogen permeability was used often to measure degradation of electrolyte membrane in PEMFC. In case of hydrogen permeability measured by LSV(Linear Sweep Voltammetry) method, the degradation of electrode decrease the value of hydrogen crossover current due to LSV methode's dependence on electrode active area. In this study hydrogen permeability was measured by gas chromatograph(GC) when membrane and electrode degraded at the same time. It was showed that degradation of electrode did not affect the hydrogen permeability measured by GC because of GC methode's independence on electrode active area.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Deterioration Diagnosis of Surface and Coating Layer for Maintenance Managements of the Membrane Structure (막구조 건축물의 유지관리를 위한 표면 및 코팅층의 열화 진단)

  • Kang, Joo-Won;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper contains of descriptions of deterioration diagnosis of the surface and a coating layer for maintenance managements of large spatial structures with membrane structure. Membrane is a roofing material of the structures that its performance of durability including its performance of chemical resistance and corrosive resistance is considered to be highly important. In general, the items of diagnosis for maintenance managements such as membrane extensively include the diagnosis of deterioration of the membrane surface, of a coating layer of membrane, the diagnosis of deterioration between a coating layer and fiber, of overall surface of membrane, of the class of ropes, of reinforced belts, and of the cover of rubber. The object of this study that needs maintenance managements of the membrane with PVC and FIFE which are commonly used and shows the diagnosis results of deterioration of the surface and a coating layer.

Degradation of Nafion Membrane by Oxygen Radical (산소 라디칼에 의한 Nafion 막의 열화)

  • Kim, Taehee;Lee, Junghun;Cho, Gyoujin;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.597-601
    • /
    • 2006
  • The degradation of the Nafion membrane by oxygen radical (OH, $HO_2$) was investigated in Polymer electrolyte membrane fuel cell (PEMFC). Nafion membrane was degraded in Fenton solution consisted with hydrogen peroxide (10-30%) and ferrous ion (1-4 ppm) at $80^{\circ}C$. After degradation in Fenton solution, C-F, S-O and C-O chemical bonds of membrane were broken by oxygen radical attack. Breaking of C-F bond reduced the mechanical strength of Nafion membrane, and hence induced pinholes, resulting in increase of $H_2$ crossover through the membrane. Decomposition of S-O and C-O bonds decreased the ion exchange capacity of the electrolyte membrane. The performance of unit cell composed the membrane, which was degraded in 30% $H_2O_2$ with 4ppm $Fe^{2+}$ solution for 48 hr, was about half times as low as one with normal membrane.

A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 열화과정에서 OCV 감소 및 회복 거동을 통한 비가역적 열화 연구)

  • Yoo, Donggeun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.217-222
    • /
    • 2022
  • It is very important to analyze the OCV change behavior during the open circuit potential holding (OCV holding) process, which accelerates the evaluation of the electrochemical durability of the PEMFC membrane. In this study, an empirical formula using the experimental data of three MEAs with different durability was created and compared. The durability evaluation time of the reinforced membrane MEA without radical scavenger inside the membrane was 383 h, and the durability evaluation time of the reinforced membrane MEA with radical scavenger inside the membrane was 1,000 and 1,650 h, respectively. The degradation of the membrane was divided into the reversible degradation that can be recovered by activation and the irreversible degradation that is not recovered. The irreversible degradation of the membrane was indicated by an increase in hydrogen permeability, and the change in hydrogen permeability was similar to the irreversible degradation constant c of all three MEAs. The initiation of irreversible deterioration without recovery is indicated by an increase in hydrogen permeability, and the OCV is not recovered due to an increase in hydrogen permeability, so the slope of the OCV recovery line (ORL) decreases, which can be confirmed by an increase in the constant c value of the empirical formula.

In-Situ Raman Spectroscopic Investigation of Oxide Films on Structural Materials in Nuclear Power Plants (라만 분광법을 이용한 원전 구조재료 실시간 산화막 분석 연구)

  • Kim, Jong Jin;Kim, Ji Hyun
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • 원자력 발전소의 설계 수명이 늘어나고 기존의 가동 원전 또한 장기 운전을 목표로함에 따라, 원자로 압력용기, 가압기, 증기발생기, 배관 등의 주요 구조재료의 장기 열화에 따른 재료 건전성을 유지하는 것이 매우 중요하다. 특히, 응력부식균열 현상은 장기 열화에 의해 일어날수 있는 구조재료에서의 심각한 취화 문제들중의 하나로써, 이 현상을 예방하거나 지연시키기 위해서는 현상의 근본원인과 작동기구를 규명하는 것은 원전의 안전성 유지를 위해 매우 중요하다. 이를 위해서 구조재료 표면의 원전 운전 조건에서의 산화막 특성과 그 형성 거동을 분석하는 것은 매우 중요하게 되는데, 원전 운전 조건은 고온고압의 수화학 환경으로 일반 환경에서 사용가능한 다양한 분석 방법들을 적용하기에 많은 제약을 받게 된다. 그러나, 라만 분광법은 가동 원전의 운전 조건인 고온/고압수 환경 하에서도 실시간으로 산화막 분석이 가능한 기법으로, 본 논문에서는 지금까지의 라만 분광법을 이용하여 고온고압수 환경에서의 주요 구조용 금속 및 합금 표면에 생성된 산화막에 대한 분석 연구 결과에 대하여 소개하고, 앞으로 이를 이용한 구조재료의 열화 현상을 분석 및 열화기구 규명을 위한 연구개발 방향을 제시하고자 한다.