• 제목/요약/키워드: 마코프 체인 모형

검색결과 40건 처리시간 0.023초

랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용 (A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior)

  • 김연경;황범석
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.287-301
    • /
    • 2018
  • 0이 과도하게 많이 나타나는 자료는 여러 다양한 분야에서 흔히 볼 수 있다. 이러한 자료들을 분석할 때 대표적으로 영과잉 포아송 모형이 사용된다. 특히 반응변수들 사이에 상관관계가 존재할 때에는 랜덤효과를 영과잉 포아송 모형에 도입해서 분석해야 한다. 이러한 모형은 주로 빈도론자들의 접근방법으로 분석되어왔는데, 최근에는 베이지안 기법을 사용한 분석도 다양하게 발전되어 왔다. 본 논문에서는 반응변수들 사이에 상관관계가 존재하는 경우 랜덤효과가 포함된 영과잉 포아송 회귀모형을 베이지안 추론 방법을 토대로 제안하였다. 이 모형의 적합성을 판단하기 위해 모의 실험을 통해 랜덤효과를 고려하지 않은 모형과 비교 분석하였다. 또한, 실제 지역사회 건강조사 흡연 자료에 직접 응용하여 그 결과를 살펴보았다.

연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석 (The extension of a continuous beliefs system and analyzing herd behavior in stock markets)

  • 박범조
    • 경제분석
    • /
    • 제17권2호
    • /
    • pp.27-55
    • /
    • 2011
  • 최근 금융시장의 변동성이 현저하게 증폭되면서 이에 대한 원인으로 금융시장의 군집 행동에 대한 이론적 연구가 활발하게 진행되고 있지만 군집행동의 시계열적 특성을 파악할 수 있는 실증적 연구는 거의 없었다. 따라서 본 연구는 연속신념시스템(continuous beliefs system)의 이론적 확장을 통해 군집행동을 시계열적으로 측정할 수 있는 군집행동 파라미터를 도출하였으며 이를 추정하기 위한 계량모형을 제안하였다. 또한 이 모형의 효율적 추정을 위해 MCMC 추정법을 적용하였다. KOSPI와 DOW 지수월별자료를 이용한 실증분석 결과에 의하면 미국보다 우리나라 주식시장의 군집행동이, 그리고 글로벌 금융위기 전보다 글로벌 금융위기 이후에 군집행동이 강하게 나타났다. 또한 글로벌 금융위기로 인해 군집행동의 변동성(표준편차)이 증가하였으며 군집행동은 수익률 변동성과는 달리 지속적인 자기상관을 유지하지 않았다. 이런 결과는 군집행동이 금융시장을 불안하게 만드는 한 원인이 될 수 있음을 나타낸다.

흡수 마코프 체인을 활용한 적정 M/F 재고 수준에 관한 연구 (An Analysis on the Optimal Level of the Maintenance Float Using Absorbing Markov Chain)

  • 김용;윤봉규
    • 한국국방경영분석학회지
    • /
    • 제34권2호
    • /
    • pp.163-174
    • /
    • 2008
  • 군은 신뢰도(Reliability)나 가용도(Availability)가 다른 어떤 조직보다 중요한 조진이다. 최근에는 시스템 준비태세(System Readiness)를 강조하며, 무기체계의 성능뿐 아니라 가용도를 중요한 성과 목표로 정의하고 있어 이런 경향은 심화되고 있다. 이런 맥락에서, 군의 중요한 설비나 장비들은 신뢰도(Reliability)와 가용도(Availability) 제고를 위해 만약의 경우를 대비하는 여유 장비를 운용하고 있다. 이를 정비대충장비(M/F Maintenance Float, 이하 M/F) 라고 한다. 군의 정비대충장비는 매년 장비의 수량과 가동률을 적용하여 소요량을 산출하고 있으나, 기존의 방법은 고장특성과 정비부대의 정비능력에 대한 고려가 미흡하여, M/F 도입에 따른 효과인 신뢰도와 가용성 제고를 원래 의도된 목표만큼 달성하지 못하고 있다. 본 연구에서는 대기행렬이론과 흡수 마코프체인을 활용하여, M/F 재고 수준 결정을 위한 분석 모형을 제시하고, 그 결과를 활용하여 역습부대역할을 수행하는 OO부대에서 운용되고 있는 K-1 전차의 운영유지 대풍장비의 최적 수량을 산출했다. 본 연구는기존 연구에 비해 이해가 용이한 (Tractable) 방법론을 활용하면서도 M/F 수준과 관련된 의사결정을 정교하게 묘사할 수 있는 모형을 제시했다는 점에서 의의가 있다.

최소 표현 라플라스 변환에 기초한 단계형 확률변수의 시뮬레이션에 관한 연구 (Simulation of the Phase-Type Distribution Based on the Minimal Laplace Transform)

  • 김선교
    • 한국시뮬레이션학회논문지
    • /
    • 제33권1호
    • /
    • pp.19-26
    • /
    • 2024
  • 단계형 확률분포는 마코프 체인이 특정 상태로 흡수되는 시점까지 거쳐가는 여러 단계에서 체재하는 시간들의 합으로 정의되며 대기행렬 시스템과 신뢰성 분석 모형 등에 광범위하게 사용된다. 연속적 단계형 분포의 경우 흡수 상태로 진입하기까지 거쳐가는 각각의 단계에서의 체재 시간이 지수분포를 따르므로 연속적 단계형 분포는 다양한 지수분포들의 합 또는 볼록 결합으로 나타낼 수 있다. 단계형 분포를 생성하는 가장 일반적이면서도 직관적인 방법은 마코비안 표현방법이라 불리는 초기 확률벡터와 전이 생성행렬에 의해 주어지는 조건부 확률을 이용하는 것이다. 적률이 주어진 상황에서 단계형 변수를 생성하는 방법에 대한 기존의 연구들은 대부분 적률을 마코비안 표현방법으로 변환하는 것을 전제로 하고 있다. 본 연구에서는 적률을 마코비안 표현방법으로 변환하지 않고 확률 분포함수를 결정하여 단계형 확률변수를 생성하는 방법에 대해 살펴보고 마코프 표현을 사용하는 기존의 방법 대신에 조단 분해법과 최소 표현 라플라스 변환을 이용하여 2계 단계형 확률변수를 분포함수를 결정하는 공식과 절차를 제시한다. 이러한 접근 방법은 고차원의 단계형 확률분포를 이용하여 대기행렬의 시뮬레이션을 하는 경우에 마코비안 표현방법의 전이행렬을 결정하여 변수를 생성하는 경우보다 효율적이다.

과거의존 파론도 게임의 재분배 모형을 이용한 주식 투자 (Stock investment with a redistribution model of the history-dependent Parrondo game)

  • 진건주;이지연
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.781-790
    • /
    • 2015
  • 파론도 역설은 두 개의 지는 게임이 결합하여 이기게 되거나, 두 개의 이기는 게임이 결합하여 지게 되는 역설적인 현상을 말한다. 본 논문에서는 한 투자가가 여러 개의 주식 계좌를 과거의 투자 결과에 의해 투자 종목이 결정되는 과거의존 파론도 게임의 규칙에 따라 관리하는 경우를 고려한다. 주식의 매매만으로는 전체 계좌의 평균 누적 수익금이 점차 감소하지만 주식 투자를 진행하는 중 계좌간에 일정한 금액을 재분배하면 전체 계좌의 평균 누적 수익금이 증가하는 파론도 현상이 존재할 수 있음을 2012년부터 2014년까지의 3년간의 한국거래소의 주식 데이터를 이용하여 확인한다. 반대로 계좌 간의 금액 재분배로 인해 점차 증가하는 평균 누적 수익금이 오히려 감소하는 역 파론도 현상이 발생할 수 있음도 함께 확인한다.

기상인자의 주기성 분석 및 일반화 선형모형을 이용한 강수영향분석: 2004KEOP의 한반도 남서지방 8개 지역 기상관측자료사용 (Analysis of Periodicity of Meteorological Measures and Their Effects on Precipitation Observed with Surface Meteorological Instruments at Eight Southwestern Areas, Korea during 2004KOEP)

  • 김혜중;염준근;이영섭;김영아;정효상;조천호
    • 응용통계연구
    • /
    • 제18권2호
    • /
    • pp.281-296
    • /
    • 2005
  • 본 연구에서는 2004년 기상청 집중관측기간(KEOP)에 수집된 지상관측자료를 사용하여 한반도 남서지방의 지역별(해남 외 7개 지역) 기상인자들의 주기성과 이들이 강수현상에 미치는 영향을 분석하였다. 이를 위하여 기술통계와 스펙트럴분석을 사용하여 주기성을 분석하고, 관측기간 및 지역별 랜덤효과를 반영할 수 있는 일반화 선형모형을 제시하여 강수현상에 미치는 기상인자들의 영향을 분석했다. 분석결과에 의하면 기상인자들과 강수현상은 연관성을 가지며 특정주기에 따라 변동하는 것으로 나타났으며, 기상인자들은 지역에 따라 상이한 패턴으로 강수현상에 영향을 미치는 것으로 나타났다.

베이지안 선택 모형을 이용한 영화흥행 예측 (Predicting Financial Success of a Movie Using Bayesian Choice Model)

  • 이경재;장우진
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.1851-1856
    • /
    • 2006
  • 영화는 대표적인 경험재로 가치판단이 주관적이고 제품 수명주기가 매우 짧아 예측의 불확실성이 높기 때문에 이를 정량적인 방법으로 모형화하기는 쉽지 않다. 이러한 한계점에도 불구하고 한 영화의 상업적 성공을 예측하는 것은 영화 제작자나 배급사, 극장 등 모든 주체에게 수익과 직결되는 중요한 문제이기 때문에 지금까지 다양한 통계 모형이 제시되었다. 그러나 이들 모형의 대부분은 영화흥행에는 영향을 미치나 측정할 수 없는 효과를 반영하지 못한다거나, 추정 모수의 효과가 모든 영화에 대해서 같다는 동일성 가정으로 인해 영화간 이질성을 고려하지 못하고 있다. 따라서, 본 연구에서는 추정 모수의 사전분포를 모호사전분포로 정의함으로써 변수들의 불확실성을 반영할 수 있고, 영화간 이질성을 고려할 수 있는 베이지안 선택 모형을 제안하였다. 모수의 사후분포는 마코프체인 몬테카를로 기법인 깁스 샘플러를 이용하여 추정하였다. 또한, 감독, 배우, 장르 등의 영화 별 속성 변수뿐만 아니라, 입소문에 의한 영화관람 결정 등의 구전효과와 경쟁영화의 개봉으로 인한 효과를 반영할 수 있는 변수를 추가하여 모형의 정확성을 높였다. 2005년과 2006년 상반기에 상영된 영화를 바탕으로 모형을 구축하고 인공신경망 모형과 비교한 결과, 전체적인 예측 정확도에서는 인공신경망 모형과 비슷한 결과를 보이나 상업적으로 성공한 영화를 예측하는 데에는 베이지안 선택모형이 보다 더 우수한 것으로 나타났다. 또한, 개봉 주의 경쟁심화 정도 및 개봉 첫 주의 스크린 수 등이 영화 흥행에 가장 중요한 변수로 나타났으며, 영화 개봉 전 그 영화에 대한 기대치가 높을수록 흥행 성적 또한 좋음을 알 수 있었다. 배우의 힘 및 계절성, 영화 평점 등은 이질성을 고려하지 않은 전체수준에서는 통계적으로 유의하지 않은 것으로 나타났으나, 그룹 간 이질성을 반영한 모형에서는 어느 정도 흥행한 영화를 만들기 위해서는 고려되어야 할 요소로 나타났다.렇지 않을 경우 적절한 벤치마킹 대상을 도출할 때까지 추가적인 분석과정을 반복한다. 제안한 방법을 통하여 조직은 기술적 생산 가능성 외에도 다양한 조직 운영 관점에서 적절한 벤치마킹 대상을 선정할 수 있으며, 이에 따른 목표를 수립할 수 있을 것으로 기대한다. 또한 더 나아가 global efficiency 관점에서 효율적 조직이 되기 위하여 단계적인 벤치마킹 대상 선정과 이에 따른 목표를 수립하는데도 유용하리라 판단된다.$1.20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자($1.27{\pm}0.45L$)보다 더 높게 나타났으며 (t=2.170, P=0.042), 72시간에도 역시 남자($2.16{\pm}0.56L$)가 여자($1.50{\pm}0.47L$)보다 더

  • PDF

구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형 (Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain)

  • 김흥섭
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권4호
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형 (Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter)

  • 최정현;이옥정;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

Support Vector Regression을 이용한 희소 데이터의 전처리 (A Sparse Data Preprocessing Using Support Vector Regression)

  • 전성해;박정은;오경환
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.789-792
    • /
    • 2004
  • 웹 마이닝, 바이오정보학, 통계적 자료 분석 등 여러 분야에서 매우 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 가장 기본적인 평균과 최빈수뿐만 아니라 조건부 평균, 나무 모형, 그리고 마코프체인 몬테칼로 기법과 같은 결측치 대체 기법들을 적용하여 추정된 값에 의해 대체된다. 그런데 주어진 데이터의 결측치 비율이 크게 되면 기존의 결측치 대체 방법들의 예측의 정확도는 낮아지는 특성을 보인다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 결측치 대체 방법들의 수는 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 통계적 학습 이론 중에서 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형하여 적용하였다. 제안 방법을 이용하여 결측치 비율이 큰 희소 데이터의 전처리도 가능할 수 있도록 하였다 UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.