• Title/Summary/Keyword: 마찰형 댐퍼

Search Result 12, Processing Time 0.019 seconds

Test of RC Structures with Friction Damper (마찰형 댐퍼가 있는 RC 구조물에 관한 실험적 연구)

  • Kim, Young Ju;Ahn, Tae Sang;Lee, Chang Hwan;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • 국내의 내진설계 기준은 1988년에 처음 도입되었으며, 최근 점차 강화되고 있는 실정이다. 공동주택에 주로 적용되는 전단벽식 구조시스템에서 증가된 지진력에 저항하기 위해서는 벽량과 철근이 증가하게 되어 공사비가 상승하게 된다. 이러한 단점을 보완하기 위한 제진설계의 필요성이 대두되고 있는 실정인데, 기존의 제진장치는 주로 가새형 또는 벽체형을 대부분이라 평면계획에 제약이 있다. 따라서 전단벽식 구조의 공동주택의 제진설계 시에는 우리나라와 같은 중 약진 지역에 적합하고 저렴한 비용으로 충분한 내진성능과 평면의 가변성을 확보할 수 있는 댐퍼의 선택이 필요하다. 본 연구의 목적은 기존의 가새형 및 벽체형 제진장치의 국내 공동주택 적용시의 문제점인 평면의 가변성 확보에 유리하고, 수동형 제진장치의 장점을 추구할 수 있는 마찰댐퍼를 삽입한 커플링보 제진시스템의 내진성능을 조사하는 것이다. 내진성능을 평가하기 위해서 실대형 커플링보 실험체를 계획하고 제작하였다. 실험체는 2개로 구성되어 있으며, 하나는 기존의 철근배근 상세를 갖는 철근콘크리트 커플링보 실험체와 커플링보에 마찰댐퍼가 삽입된 실험체이다. 횡하중에 대한 성능을 평가하기 위해서 유사정적 반복가력실험을 실시하였다. 엑츄에이터로부터 실험체 상보의 가력지그를 통해 하중이 전달되도록 하였으며, 가력은 최초 0.25%의 층간변형각부터 변위제어를 통해 목표 층간변형각인 1.5% 이상까지 진행되도록 하였다. 실험결과, 두 실험체의 이력곡선과 에너지 흡수능력을 평가하였다. RC 실험체는 핀칭현상이 관찰되었고, 가력이 진행됨에 따라 커플링보와 벽체에서의 균열이 확산되어 종국적으로 취성적인 커플링보의 전단파괴가 발생하였다. 마찰댐퍼를 삽입한 실험체는 계획된 마찰거동이 잘 발휘되어 목표 층간변형각인 1.5%까지 이선형거동이 잘 나타났다. 최대 내력은 RC 실험체가 3배 이상 크지만, 누적층간변형각에 따른 에너지 흡수능력은 마찰댐퍼 실험체가 2배 이상 우수한 결과를 보였으며, 커플링보 및 벽체에서의 균열이 매우 저감되었다.

  • PDF

A Smart Damper Using Magnetic Friction And Precompressed Rubber Springs (자력 마찰과 기압축 고무 스프링을 이용한 스마트 댐퍼)

  • Choi, Eun Soo;Choi, Gyu Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • This study proposes a new technology for a smart damper with flag-shaped behavior using the combination of magnetic friction and rubber springs. The magnet provides friction and, thus, energy dissipation, and the rubber springs with precompression contribute to present self-centering capacity of the damper. To verify their performance, this study conducts dynamic tests of magnet frictional dampers and precompressed rubber springs. For the purpose, hexahedron Neodymium (NdFeB) magnets and polyurethane rubber cylinders are used. In the dynamic tests, loading frequency varies from 0.1 to 2.0 Hz. The magnets provide almost perfect rectangular behavior in force-deformation curve. The rubber springs are tested without or with precompression. The rubber springs show larger rigid force with increasing precompression. Lastly, this study discusses combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine the magnets and the rubber springs to obtain the flag-shaped behavior.

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.

Design of Sharp-edged Type Damping Orifices for an Aircraft Door Damper (민항기 door damper용 칼날형 댐핑 오리피스의 설계)

  • Hong, Yeh-Sun;Kwon, Yong-Cheol;Kim, Chong-Hyeok;Park, Seol-Hye;Park, Ho-Yeol;Kim, Sang-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1080-1085
    • /
    • 2012
  • In this paper a sharp-edged type damping orifice for an aircraft door damper were designed, where the dynamic viscosity of working fluid were assumed to change up to 400cSt. The discharge coefficient of the damping orifice were investigated by CFD analyses and experiments. In particular, the influences of orifice diameter, edge angle, flow direction and the Reynolds number were taken into consideration. Based on this, it has been deduced how high Coulomb friction forces of damper seals is to be allowed to meet the performance criterion with respect to the orifice size.

Shape Optimization of Uniaxial Vibrating Metal Damper (일축 진동형 금속제진장치 형상 최적설계)

  • Yoon, Ji-Hoon;Park, Ji-Woon;Lim, Yun-Mook;Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.313-318
    • /
    • 2017
  • This study performs the structural analysis and the optimum design of a vibrating metal damper to absorb vibration energy. Unlike other dampers such as rubber bearing, friction or viscose dampers, the present vibrating metal damper utilizes the plastic deformation of a steel and its associated hysteresis phenomenon to reduce vibrations of structures. To optimize this vibrating metal damper, it is important to obtain plastic deformation through the damper. To achieve this, the shape optimization method is developed and applied to find out optimal envelopes of the metal damper. Depending on the parameterization scheme, some novel optimal shapes can be found.

Analysis of Performance Tests and Friction Characteristics of a Friction Type Isolator Considering Train Load Conditions (열차 하중조건을 고려한 마찰형 방진장치 성능시험 및 마찰특성 분석)

  • Koh, Yong-Sung;Lee, Chan-Young;Ji, Yong-Soo;Kim, Jae-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.694-702
    • /
    • 2017
  • In the case of an elevated railway station, structure borne noise and vibration due to structural limitations allow the load and vibration from railway vehicles to be directly transmitted to the station structure, resulting in an increase in the number of civil complaints from customers and staff of the station. The floating slab track system, which is well known as one of the solutions for reducing the noise and vibration from elevated railway stations, usually contains rubber mounts or rubber pads under the railway slab which act as a damper. These types of device have the disadvantage that is difficult to predetermine the exact stiffness and damping ratio under the nonlinear loads resulting from train services. In this study, an isolator with a friction type of wedge is introduced, which can be applied to floating slab track systems and to be designed with precisely the required stiffness. Furthermore, a comparative analysis of the stiffness between the designed and experimental values is carried out, while the damping ratio, which is closely related to the friction wedge blocks, is deduced according to the train load condition. The performance tests of the isolator were conducted in accordance with the DIN 45673-7 standard which includes both static and dynamic load tests. The load conditions for the performance tests are designed to conform to the DIN standard related to the weight of the train and rail track, in order to perform vertical and horizontal load tests, so as to ensure the secure structural safety of the railway. Also, by checking the change aspect of the friction coefficients of the friction elements according to the loading rate, the vibration reduction performance of the friction type isolator with variable loading rate conditions is examined.

Evaluation on Structural Performance of Two-nodal Rotary Frictional Component (2절점 회전형 마찰요소의 구조성능 평가)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • Various hybrid dampers have been developed in Korea to control the vibration due to a wind and earthquake. In order to minimize the installment space, cost and construction process, the new hybrid friction damper is developed. This hybrid damper is composed of several rotary friction components having two frictional joint. Because of these components, the building vibration due to wind and earthquake can be mitigated by hybrid friction damper. In this paper, various dependency tests were carried out to evaluate on the structural performance of two joint rotational friction component of the hybrid damper. Test results show that two joint rotational components do not depend on a displacement and a frequency of forcing but friction coefficients is reducing as a clamping force is increasing.

Practical Semiactive Control of Hydropnematic Suspension Units (유기압 현수장치의 반능동 제어 구현에 관한 연구)

  • 이윤복;송오섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

Experimental Study on the Structural Performance of Hybrid Friction Damper (혼합형 마찰댐퍼 구조성능에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.103-110
    • /
    • 2015
  • Various hybrid dampers have been developed as increasing tall buildings in Korea. To minimize the installment space and cost, the new hybrid friction damper was developed using friction components. It is composed of two one-nodal rotary frictional components and a slotted bolted frictional connection. Because of these components, hybrid friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, displacement amplitude dependency tests were carried out to evaluate on the structural performance and the multi-slip mechanism of the hybrid damper. Test results show that the multi-slip mechanism is verified and friction coefficients are increasing as displacement amplitudes are increasing.