• Title/Summary/Keyword: 마이크로 소성

Search Result 197, Processing Time 0.018 seconds

Fabrication of Large Area Stamp with High Aspect Ratio Micro Intaglio Features (고세장비 마이크로 음각 형상을 갖는 대면적 스탬프의 제작)

  • Lee, Byung-Soo;Han, Jeong-Won;Han, Jung-Jin;Lim, Ji-Seok;Yoo, Yeong-Eun;Je, Tae-Jin;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.84-87
    • /
    • 2009
  • This paper describes a novel method for fabricating large area metallic stamp with high aspect ratio micro intaglio features. Micro machined brass master with pillar and larger width groove patterns were electroformed to form inverse structures on the large area metallic stamp. This enabled large area metallic stamp with fine micro high aspect ratio micro intaglio features which were small width groove patterns and quadrilateral hole patterns that cannot be fabricated by direct micro machining process. Fabricated large area metallic stamp with high aspect ratio micro intaglio features was measured and analyzed.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF

Design and Fabrication of Micro Laser Module for Heat Assisted Magnetic Recording (차세대 열 보조 자지기록용 마이크로 레이저 모듈 설계 및 제작)

  • Lee, S.C.;Choi, Y.B.;Kim, Y.J.;Kim, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.68-69
    • /
    • 2009
  • Heat Assisted Magnetic Recording (HAMR) is one of the most promising candidates for high density magnetic storages over 1 Tb/$in^2$ areal density. Since the precise light delivery to the head is a key factor to realize HAMR application, it is required to establish the light delivery using micro laser module and micro actuator. For the careful control of micro actuator, a laser module was designed including laser diode, optical fiber, collimating lens, and fabricated V-groove substrate. In addition, the basic aligning method between the laser module and HAMR head was studied by the detection of current change in photo diode due to the amount of reflected light from the head.

  • PDF

Fabrication of High Aspect Ratio Micro Structure for fine pitch probe production (Fine pitch probe 제작을 위한 고세장비 마이크로 구조물 제작)

  • Lee, S.I.;Kim, W.K.;Pyo, C.R.;Kim, D.Y.;Yang, S.J.;Ko, K.H.;Kim, H.J.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.356-359
    • /
    • 2007
  • Continuing improvements in integrated circuit chip density and functionality have mostly contributed toward a very large-scale integrated circuit(VLSI) and display device. In order to test (pass or fail) all of the high integrated semiconductor chip and display device, fine pitch probes are used. Fine pitch probes are manufactured by electroforming process of a Ni alloy in an electrolytic bath. In this paper, we expect that the electric field in bath with the Finite Element Method and applying the FEM result. So, we can obtained the probes that have high aspect ratio of 10 : 1

  • PDF

Development of Micro Tensile Tester for High Functional Materials (고기능 소재용 마이크로 인장시험기 개발)

  • 최현석;한창수;최태훈;이낙규;임성주;박훈재;김승수;나경환
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.561-568
    • /
    • 2002
  • Micro tensile test is the most direct and convenient method to measure material properties such as Young's modulus and fracture strength. It, however, needs more accurate measurement system, mote stable and repetitive alignment and more sensitive gripping than conventional tensile test. Many researchers have put their effort on overcoming these difficulties for tile development of micro tensile tester, fabricating micro specimens of functional materials and measuring their properties. This paper will review the related vigorous researches over the world in the recent decade and explain how to apply them to a design of the fester which is under our own development.

Finite Element Analysis for Shape Prediction on Micro Lens Forming (마이크로 렌즈 성형시 형상예측을 위한 유한요소해석)

  • 전병희;홍석관;표창률
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.581-588
    • /
    • 2002
  • Among the processes to produce micro lens, the process using press molding is a new technology to simplify the process, but it contains many unknown variables. The press-molding process proposed in this paper was simplified into two step process, the first step is the pressing to design the preform for glass element, the second step is the annealing to reduce the residual stress. It is important to estimate the amount of shrinkage of glass gob and the residual stress during process. It Is difficult to evaluate the process variables as mentioned above through the experiment. The influences due to process variables was evaluated by using FEM parametric analysis. The results in this paper can be applicable to produce micro lens.

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.23-28
    • /
    • 2005
  • Microlens arrays were fabricated using a modified LIGA process based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, the hot embossing and the microinjection molding processes have been successfully utilized with the fabricated mold insert. Fabricated microlenses showed good surface roughness than the mold insert. The focal lengths of the injection molded microlenses were successfully measured experimentally and also estimated theoretically.

  • PDF

Study on Micro Endmilling Process for Manufacturing of Very Small Gear Parts and Mold with Two-Stage (미소 2단 기어 부품 금형 가공을 위한 마이크로 엔드밀링 공정기술 연구)

  • Je, T.J.;Noh, J.S.;Kim, B.D.;Kim, J.G.;Yoon, J.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • A multi-stage gear mold including gears of 2mm and 1.5mm diameter was designed and machined in this research for developing micro gear mold manufacturing technology with micro endmill. Mechanical shapes having differential micro teeth were analyzed to be formed as designed and processing conditions were optimized by analyzing machined surface chip and cutting force. Based on the results, a prototype of micro multi-stage gear mold was manufactured.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.