• Title/Summary/Keyword: 마이크로 소성

Search Result 197, Processing Time 0.022 seconds

Simulation based Process Design of Flat Die Thread Rolling for Micro Screw (마이크로 스크류의 해석기반 판형 전조성형공정 연구)

  • Park, K.D.;Song, J.R.;Lee, H.J.;Lee, G.A.;Lee, N.K.;Lee, H.W.;Ra, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.62-65
    • /
    • 2009
  • There have been strong demands for micro size screw with high precision due to miniaturization and integration trends for electronic products such as Hard Disk Drives. The thread rolling process for screw manufacturing are lower unit cost, reduced material utilization, and superior mechanical properties compared to the machining process. But little work has been done on the thread rolling of micro size screw. In this paper, we investigate thread rolling process using Finite Element Analysis (FEA) and parameter study for screw manufacturing. And we also carried out compression tests to obtain the material property and to implement into the FE tool for the numerical simulation. In case that parameter of relative position oldies is half length of pitch for maintaining the continuous thread profiles, we found that shear friction factor was 0.9 during the thread rolling process using FEA. We are trying to develop the thread rolling process using the FE-simulation to manufacture screws which have been commonly produced from the industrial level fabrication at present.

  • PDF

On the analysis of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석적 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.53-56
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process. Also experiment is carried out process that is designed through simulation.

  • PDF

A Study on identification and improvement of adhesive quality using adhesive theory at micro/nano scale contact (응착이론을 이용한 마이크로/나노스케일 접촉에서의 응착특성 규명 및 개선에 관한 연구)

  • Kim, Gyu-Sung;Yoon, Jun-Ho
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.42-50
    • /
    • 2007
  • In this paper, elastic and plastic adhesion index was very important in deciding adhesive characteristics and varying elastic and plastic index, dimensionless load and pull-off force were analyzed and simulated. Finally, using AFM, experimental surface roughness parameters of substrates and pull-off force between tip and substrates were produced. Using these values, pull-off forces were calculated and were compared with experimental pull-off forces. Through simulation and experiment, it was found that interaction of asperity also had very important influence on adhesive contact.

Prediction of Wrinkling in Micro R2R Forming and Its Improvement (마이크로 R2R 성형에서 주름의 발생 예측과 개선)

  • Min, B.W.;Seo, W.S.;Kim, J.B.;Lee, H.J.;Lee, S.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology (나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사)

  • Cho, S.H.;Lee, C.S.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing (Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작)

  • Lee, J.W.;Ha, S.J.;Hong, K.P.;Cho, M.W.;Kim, G.H.;Yoon, G.S.;Je, T.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.

A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation (355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구)

  • Je, S.K.;Park, S.H.;Choi, C.K.;Shin, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.

Analysis of 3D Geometry and Compressive Behavior of Aluminum Open Cell Foam Using X-ray Micro CT (마이크로 X-ray CT를 활용한 알루미늄 개방형 폼의 형상 및 압축 거동 분석)

  • Kim, Y.I.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.518-523
    • /
    • 2011
  • The three dimensional geometries of an aluminum open cell foam before and after uniaxial compressive loading were investigated using the X-ray micro CT(computed tomography). Aluminum 6101-T6 open cell foams of 10, 20, 40 ppi (pore per inch) were considered in this work. After the serial sectioning CT images of aluminum foams were obtained from non-destructive X-ray images, the exact 3D structure were reproduced and visualized with commercial image processing program. The relative density ratio was around the 7.0 to 9.0 range, the unit cells showed anisotropic shapes having the different dimensional ratios of 1.1 to 1.3 between the rise and the transverse directions. The yield stress increased with the relative density ratio and the volumetric strain increased proportionally with compressive strain. The plateau stress in the compressive stress-strain curve was caused by the buckling of ligaments.