• Title/Summary/Keyword: 마이크로 밀링가공

Search Result 48, Processing Time 0.022 seconds

A Study on the Micro Parts Manufacturing Technology by Micro End-milling (마이크로 앤드밀링에 의한 미소 부품 가공기술 연구)

  • Je, T.J.;Lee, J.C.;Choi, H.;Lee, E.S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.167-172
    • /
    • 2003
  • The machining method by using end-milling tool has been applying in machining structures of various shapes because of the availability. Recently, all kinds of industries based on the parts of micro shape are developing, and the demands of mechanical micro machining technology are Increasing suddenly to produce these parts. According to such changes, the technology of the micro end-milling machining is applying as one of the most important machining means. This research is to aim at developing machining technology for various micro structures using micro end-mill. This paper introduces micro mechanical machining system with ultra precision, and demonstrates methods manufacturing all sorts of parts and moldings for industry and examples of applicable machining by using micro end-milling tool of micro sizes from hundreds to tens in diameter.

  • PDF

State Monitoring using AE Signal in Micro Endmilling (마이크로 엔드밀링에서 음향방출 신호를 이용한 상태감시)

  • 정연식;강익수;김전하;강명창;김정석;안중환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.334-339
    • /
    • 2004
  • Ultraprecision machining and MEMS technology have been taken more and more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. Also, the method of micro-grooving using micro endmilling is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This investigation deals with state monitoring using acoustic emission(AE) signal in the micro-grooving. Characteristic evaluation of AE raw signal, AE hit and frequency analysis for state monitoring is also presented in the paper.

  • PDF

Tool Deflection Estimation in Micro Flat End-milling Using Finite Element Method (유한요소법을 이용한 마이크로 평엔드밀링에서의 공구변형 예측)

  • Lim, Jeong-Su;Cho, Hee-Ju;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2010
  • The main purpose of this study strongly concerned micro machining error estimation by using FEM analysis of tool deflection shapes in micro flat end-milling process. For the precision micro flat end-milling process, analysis of micro cutting errors is mandatory. In general, tool deflection is a major factor which causes cutting error and limits realization of the high-precision cutting process. Especially, in micro end-milling process, micro tool deflection generates very serious problems in contrast to macro tool deflection. Methods which deal with compensation of cutting error by tool deflection in macro end-milling process have been studied plentifully but, few researches transact with micro scaled cutting tool deflection in micro cutting process. Therefore, the trend of micro tool deflection was estimated by using FEM analysis in this paper. Cutting forces were acquired by micro dynamometer and these were utilized in FEM analysis. In order to verify FEM analysis results, micro machining processes were carried out and real machined profiles were compared with FEM results. Finally through the proposed approach well suited FEM results were obtained.

A Study On Prediction Model of Cutting Conditions for Draft Angle Control (마이크로금형 구배각 제어를 위한 절삭가공조건 예측모델에 관한 연구)

  • Cho, Ji-Hyun;Song, Byeong-Uk;Seo, Tae-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.387-393
    • /
    • 2012
  • It is very difficult to determine suitable cutting conditions in order to obtain accurate cutting profiles because machining errors caused by tool deflection depend upon cutting conditions. In this study the relationship between real cutting profiles (inclined shapes and machining errors) and cutting conditions was modeled in order to fabricate draft angle on micro molds. CCD (Central Composite Design) of DOE (Design Of Experiment) and RSM (Response Surface Method) were applied in order to model the relationship between cutting conditions and machining errors. In order to use CCD the range of radial depth of cut was chosen by $10-90{\mu}m$ and the range of feedrate was chosen by 200-300mm/min, and 9 points of cutting conditions were chosen inside determined ranges. Then, actual cutting processes were carried out as respect to 9 points of cutting conditions, draft angles and real cutting profiles were measured on cutting profiles, each response surface function was determined by conducting response surface analysis and the functions were represented by 3-dimensional graphs, contour lines and $101{\times}101$ matrices. Consequently it is possible to determine suitable cutting conditions in order to obtain arbitrary given draft angles and cutting profiles by using modeling. To validate proposed approach in this study suitable cutting conditions were determined by modeling in order to obtain arbitrary given draft angle and cutting profile, and actual cutting processes were carried out. About 95% of good agreement between predicted and measured values was obtained.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

Correlation Between Cutting Signal Characteristics and Microburr Formation in Micromilling of Al6061-T6 Alloy (알루미늄 합금(Al6061-T6)의 마이크로밀링가공에서 버 발생과 신호 특성의 상관관계 분석)

  • Kim, Hyun-Jung;Koo, Joon-Young;Yoon, Ji-Chan;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.401-409
    • /
    • 2016
  • The formation of micro-burrs in micro-milling processes causes several problems related to productivity and surface integrity. It should be minimized and suppressed by effective monitoring of the cutting conditions. This paper presents the correlation between the micro-burr length and cutting signals in the micro-milling process of an Al alloy (Al6061-T6). The acoustic emission (AE) signals and cutting force signals are acquired during the experiments. The characteristics of the cutting signals are obtained by analyzing the AE root mean square value and resultant cutting force. In addition, the micro-burr length is measured according to the cutting conditions by analyzing a scanning electron microscopy image of the machined surface. The results of this study can be used to enhance the surface quality of micro parts.

A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel (STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구)

  • Dong-Won Lee;Hyeon-Hwa Lee;Jin Soo Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.