• Title/Summary/Keyword: 마이크로 / 나노가공

Search Result 81, Processing Time 0.029 seconds

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

Nanotechnology and scanning microprobe microscopy (주사형 마이크로프로브 현미경과 나노테크놀로지)

  • ;Muramatsu, H.
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.616-625
    • /
    • 1996
  • 본 고에서는 최첨단 주사형 마이크로프로브현미경의 최근동향에 대해 기술하고자 한다. SNOAM의 관찰분야에의 응용이라는 관점에서 광학소자, 반도체재료, 유기박막등의 미소영역에의 광학특성의 관찰이외에 생물분야에서는 형광표식한 시료의 형상상과 형광상의 대비에서 세포나 생체고분자의 기능 해명에도 이용 가능하다고 생각된다. 또한 광가공기술에의 응용이나 기억소자 기술에의 응용도 고려되어져 금후의 응용분야에의 발전이 기대된다. 다가오는 21세기 정보화사회에서는 분자.원자를 제어하는 기술이 중심기술이 될 것으로 확신되고 있다. 그러나 현재 우리주변 기술로서 분자. 원자를 단위로 하는 평가, 분석 기술은 거의 찾을 수 없다. 따라서 주사형 마이크로 프로브 현미경은 Nano-technology로서 장래 정보화사회에 중요한 평가.분석기술의 하나로서 정착될것으로 생각된다.

  • PDF

Development of Optical Head Unit for Nano Optical Probe Array (나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발)

  • Kim H.;Lim J.;Kim S.;Han J.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.29-34
    • /
    • 2005
  • A optical head unit for nano optical probe away was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.

  • PDF

Study of nano patterning rheology in hot embossing process (핫엠보싱 공정에서의 미세 패턴 성형에 관한 연구)

  • Kim, H.;Kim, K.S.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process, simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during Compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

Micro/Nano Rheological Characteristics of PMMA in Hot Embossing Process (핫엠보싱 공정에서 PMMA의 마이크로/나노 레올로지 특성)

  • Kim B. H.;Kim K. S.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.259-264
    • /
    • 2004
  • The hot embossing process as a method for the fabrication of polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of polymer film during hot embossing process. As the initial step of quantitating the hot embossing process, simple parametric studies for the embossing conditions have been carried out using high resolution masters which patterned by DRIE process. Under different embossing times and pressures, the viscous flow of PMMA films into micro/nano cavities has been investigated. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM analysis considering micro/nano effect, such as surface tension and contact angle.

  • PDF

The ocused Ion Beam Etching Characteristic of Au (집속 이온빔 가공변수에 따른 Au 에칭 특성 연구)

  • Park, J.J.;Kim, S.D.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.129-133
    • /
    • 2007
  • Focused Ion Beam(FIB) systems is a useful tool for the fabrication of micro-nano scale structures. In this study, the effects of FIB etching on the Au microstructure are systematically investigated. As the fabrication parameters, ion dose, dwell time and beam overlap ratio are studied. First, the increases of Ga ion dose makes the milling yield higher and the sidewall of milling profile steeper. Dwell time is found to have little effects on the milling profile due to the relatively large milling area of $1\times1{\mu}m^2$ used in this study. However, beam overlap significantly affects not only milling rate but also milling profile. As the beam overlap ratio changes from positive to negative, the development of regular cross-stripe patterns at the bottom with low milling rate is observed.

Nanoparticle Synthesis by Pulsed Laser Ablation of Consolidated Microparticles (압밀 금속 마이크로 입자의 펄스 레이저 ABLATION에 의한 나노입자 합성)

  • 장덕석;오부국;김동식
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • This paper describes the process of nanoparticle synthesis by laser ablation of consolidated microparticles. We have generated nanoparticles by high-power pulsed laser ablation of Al, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355 nm, FWHM 5 ㎱, fluence 0.8∼2.0 J/㎠). Microparticles of mean diameter 18∼80 ㎛ are ablated in the ambient air The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence and collector position on the distribution of particle size is investigated. The dynamics of ablation plume and shock wave is analyzed by monitoring the photoacoustic probe-beam deflection signal. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

  • PDF

Development of Micro Plasma Electrode using Focused Ion Beam (FIB를 이용한 마이크로 플라즈마 전극 개발)

  • Choi Hon-Zong;Kang Eun-Goo;Lee Seok-Woo;Hong Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.175-180
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. In this research, fabrication of micro plasma electrode was carried out using FIB. The one of problems of FIB-sputtering is the redeposition of material including Ga+ ion source during sputtering process. Therefore the effect of the redeposition was verified by EDX. And the micro plasma electrode of copper was fabricated by FIB.

Design and Implementation of A Dynamic Structure Design System for Ultra Precision FAB. Structure based on Semi-Empirical Method (준 경험적 기법에 의한 차세대 초정밀 FAB. 구조물의 통합 동적 구조 설계 시스템 설계 및 구현)

  • Lee, Hyun-jun;Lee, Kyong-oh;Lee, Gyu-seop
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1245-1248
    • /
    • 2012
  • 반도체와 LCD 산업분야, 나노급 공정 및 검사기술이 요구되는 산업분야의 수요증가에 따라 초정밀 가공/생산/검사 장비를 설치, 운용하는 FAB. 구조물의 설계요구가 증대되고 있으며, 건물의 환경진동 규제치도 강화되고 있는 실정이다. 이와 같은 대형 구조물에서의 서브 마이크로 수준의 미진동(微振動)을 제어하는 문제는 진동 응답을 결정하는 구조와 재료가 복잡하고 다양한 형태를 갖고 있는 반면, 다루어야 할 동적 응답은 극한적으로 작은 마이크로 이하의 값을 다루어야 하기 때문에 매우 어렵다. 따라서 기존에 이용되고 있는 해석과 실험의 결과만으로는 신모델 설계에 적용하기 어렵다. 따라서, 본 논문에서는 실험적 데이터와 경험적 데이터들을 기반으로 구축된 데이터베이스를 이용하여 새로운 초정밀 FAB. 동적 구조 설계 시스템을 구현한다.

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.