• Title/Summary/Keyword: 마이크로코즘 실험

Search Result 5, Processing Time 0.021 seconds

Microcosm Studies of Nanomaterials in Water and Soil Ecosystems (수생태 및 토양생태계에서 나노물질의 마이크로코즘 연구)

  • Yoon, Sung-Ji;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2012
  • The current growth of nano-industries has resulted in released nanoparticles entering into water and soil ecosystems via various direct or indirect routes. Physicochemical properties of nanoparticles differ from bulk materials, and nanomaterials influence the fates of nanoparticles and the interactions of living or non-living things in the environment. Microcosm analysis is a research methodology for revealing natural phenomena by mimicking part of an ecosystem under controlled conditions. Microcosm study allows for the integrated analysis of toxic effects and fates of nanoparticles in the ecosystem. Ecotoxicity studies of nanomaterials are steadily increasing, and microcosm studies of nanomaterials are currently beginning to surface. In this study, microcosm studies of nanomaterials in water and soil ecosystems were extensively investigated based on SCI(E) papers. We found that the microcosm studies have been reported in 12 instances, and mesocosm studies have been reported in only once until now. Advanced research was mostly evaluated at the microorganism level. But integrated analysis of nanotoxicity is required to research the interactions based of various species. Thus, our studies analysed the trend of microcosm studies on nanomaterials in water and soil ecosystems and suggested future directions of microcosm research of nanomaterials.

Evaluation of Microbial PCE Reductive Dechlorination Activity and Microbial Community Structure using PCE-Contaminated Groundwater in Korea (사염화에틸렌(PCE)으로 오염된 국내 4개 지역 지하수 내 생물학적 PCE 탈염소화 활성 및 미생물 군집의 비교)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kwon Soo-Yeol;Kim Jung-Kwan;Lee Han-Woong;Ha Joon-Soo;Park Hoo-Won;Ahn Young-Ho;Lee Jin-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • In Korea, little attention has been paid to microbial perchloroethylene (PCE) and/or trichloroethylene (TCE) dechlorination activity and identification of microorganisms involved in PCE reductive dechlorination at a PCE-contaminated aquifer. We performed microcosm tests using the groundwater samples from 4 different contaminated sites (i.e. Changwon A, Changwon B, Bucheon and Yangsan) to assess PCE reductive dechlorination activity. We also adapted molecular techniques to screen what types of known reductive dechlorinators are present at the PCE-contaminated aquifers. In the Changwon A and Changwon B active microcosms where potential electron donors such as sodium propionate, sodium lactate, sodium butyrate, and sodium fumarate, were added, ethylene, an end-product of complete reductive dechlorination of PCE, was detected after a period of 90 days of incubation. In the Bucheon and Yangsan active microcosms, cis-1,2-dichloroethylene (c-DCE) was accumulated without the production of vinyl chloride (VC) and ethylene. Molecular techniques were used to evaluate the microbial community structures in the Changwon B and Yangsan aquifer. We found two sequence types that were closely related to a known PCE to ethylene dechlorinator, named uncultured bacterium clone DCE47, in the Changwon B site clone library. However, in the Yangsan site clone library, no sequence type was closely related to known PCE dechlorinators reported. It is plausible that microorganisms being capable of completely dechlorinating PCE to ethylene may be present in the Changwon B site aquifer. In this study we find that complete PCE reductive dechlorinators are present at some PCE-contaminated sites in Korea. In an engineering point of view this information makes it feasible to apply a biological reductive dechlorination process for remediating PCE- and/or TCE-contaminated aquifers in Korea.

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.

A Novel Method to Assess the Aerobic Gasoline Degradation by Indigenous Soil Microbial Community using Microbial Diversity Information (토양 미생물 다양성 지표를 이용한 토착 미생물 군집의 호기성 가솔린 오염분해능력 평가 기법 개발 연구)

  • Hwang, Seoyun;Lee, Nari;Kwon, Hyeji;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.839-846
    • /
    • 2016
  • Since oil leakage is one of the most common nonpoint pollution sources that contaminate soil in Korea, the capacity of soil microbial community for degrading petroleum hydrocarbons should be considered to assess the functional value of soil resource. However, conventional methods (e.g., microcosm experiments) to assess the remediation capacity of soil microbial community are costly and time-consuming to cover large area. The present study suggests a new approach to assess the toluene remediation capacity of soil microbial community using a microbial diversity index, which is a simpler detection method than measuring degradation rate. The results showed that Shannon index of microbial community were correlated with specific degradation rate ($V_{max}$), a degradation factor. Subsequently, a correlation equation was generated and applied to Michaelis-Menten kinetics. These results will be useful to conveniently assess the remediation capacity of soil microbial community and can be widely applied to diverse engineering fields including environment-friendly construction engineering fields.

Short -term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments (황토와 화학물질 살포에 의한 적조생물Cochlodinium polykrikoides 제어에 따른 미소생물그룹의 단주기변화)

  • Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2971-2977
    • /
    • 2015
  • This study aimed to understand the changes in microbial community after algicide dosing to control the fish-killing dinoflagellate Cochlodinium polykrikoides in 10L microcosm. Based on our microcosm experiments, the algicidal activity for C. polykrikoides of yellow clay at the concentrations of 4g and 10g per 10 L was < 20%. At $0.8{\mu}M$ concentration of thiazolidinedione(TD49), the population of C. polykrikoides was controlled to be > 85%. In microbial community, a significant increase in heterotrophic bacterial (HB) abundance was observed at day 1 in the TD49 and yellow clay treatments including control. The HB remained high for 2 days and then gradually decreased. In contrast, the abundance of heterotrophic nanoflagellates (HNFs) increased significantly on days 3 and 5 in the TD49 treatments, indicating that the decline in HB was probably a result of predation by the high density of HNFs. In addition, fluctuations in the aloricate ciliate Uronema sp., which feed on bacteria, was clearly correlated with fluctuations in HB abundance, with a lag period of 1-3 days. Therefore, the short-term responses of the HNF and Uronema sp. may have been a result of the rapidly increasing of HB abundance, which is related to degradation of the dense C. polykrikoides bloom, particularly in the TD49 treatment. In addition, large aloricate ciliate Euplotes sp. was significantly increased after reproduction of HNFs and Uronema sp. Consequently, the algicide TD49 had positive effect on the microbial communities, which indicates that the microbial loop was temporarily enhanced in the microcosm by energy flow from HB through HNFs to ciliate.