• Title/Summary/Keyword: 마이크로캐스팅

Search Result 13, Processing Time 0.017 seconds

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

Preparation of Cellulose Nanofibrils and Their Applications: High Strength Nanopapers and Polymer Composite Films (셀룰로오스 나노섬유의 제조 및 응용: 고강도 나노종이와 고분자복합필름)

  • Lee, Sun-Young;Chun, Sang-Jin;Doh, Geum-Hyun;Lee, Soo;Kim, Byung-Hoon;Min, Kyung-Seon;Kim, Seung-Chan;Huh, Yoon-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.197-205
    • /
    • 2011
  • Cellulose nanofibrils (CNF) with 50~100 nm diameter were manufactured from micro-size cellulose by an application of a high-pressure homogenizer at 1,400 bar. High strength nanopapers were prepared over a filter paper by a vacuum filtration from CNF suspension. After reinforcing and dispersing CNF suspension, hydroxypropyl cellulose (HPC) and polyvinyl alcohol (PVA)-based composites were tailored by solvent- and film-casting methods, respectively. After 2, 4, 6 and 8 passes through high-pressure homogenizer, the tensile strength of the nanopapers were extremely high and increased linearly depending upon the pass number. Chemical modification of 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) on the nanopapers significantly increased the mechanical strength and water repellency. The reinforcement of 1, 3, and 5 wt% CNF to HPC and PVA resins also improved the mechanical properties of the both composites.