본 연구에서는 마스크 착용이 필수가 된 시대를 살고 있는 20대를 대상으로 하여 마스크에 대해서 어떤 인식을 가지고 있는지를 조사하여 그 인식을 유형화하고 유형별 특성을 알아보고자 하였다. 이를 통해 마스크를 착용하는 사람들이 어떤 생각을 가지고 마스크를 사용하는가와 어떤 제품을 원하는지를 분석하고자 하였다. 본 연구는 Q방법론을 사용하였으며, 분석에는 쿼넬 pc프로그램을 활용하였다. 마스크에 대한 인식유형은 3개로 분류되었다. 유형 1은 마스크를 늘 착용하며 마스크가 비언어적 커뮤니케이션과 착용자의 이미지에 영향을 미친다고 생각하는 '상시 착용 영향 중시형'이었다. 유형 2는 마스크를 세균을 막기 위해 착용하며 마스크가 부정적 영향이 크다고 생각하는 '기능 중시 부정 인식형'이었다. 유형 3은 얼굴을 가리기 위해 마스크를 착용하고 마스크 착용 시 사람이 젊어 보인다고 생각하는 '은폐 착용 긍정 이미지형'이었다. 본 연구는 20대만을 대상으로 하여 다른 연령대의 마스크에 대한 인식을 알아보지 못하였다. 향후 연구에서는 다양한 연령대의 마스크에 대한 인식을 알아볼 필요가 있으며, 인식유형에 따른 마스크 디자인 개발에 관한 연구가 이루어져야 할 것으로 생각된다.
2020년 1월 국내에 신종 코로나 바이러스의 확산으로 인해 보건 마스크의 수요가 급증하고 이에 따라 마스크의 가격이 폭등하자 정부가 건강보험정보를 기반으로 보건용 마스크 판매에 관여하는 공적 마스크 5부제를 시행해 왔다. 하지만 건강보험 가입정보에 의존적인 신원 인증 시스템으로 인해 유학생 등 건강보험 미가입자의 경우 마스크의 구입이 어렵고 개인정보 접근 문제 등으로 판매채널의 확장이 어려운 문제가 있었다. 본 논문에서는 건강보험과 같은 특정 신원정보 시스템에 의존하지 않고 중앙기관이 발행하는 신뢰할 수 있는 모든 신원정보(여권, 외국인등록증 등)에 기반하여 사용자가 스스로 자신의 신원정보 속성을 블록체인을 통해 관리하는 방법을 제안한다. 또한 제안 방법에 대해 디지털신원 기법을 평가할 수 있는 지표를 기반으로 자체 평가를 수행한다.
코로나19 전염병 예방을 위한 공공장소에서의 마스크 착용이 의무화되고 있다. 그러나 사람들이 다양한 이유로 마스크를 제대로 착용하지 않아 감염에 노출되는 위험이 발생하고 있다. 이러한 방역 문제를 해결하고 본 논문은 영상을 인식하여 마스크를 쓴 얼굴과 쓰지 않은 얼굴을 검출하는 방식을 제안한다. 제안 방법은 마스크 착용자와 비착용자 얼굴 영상을 딥러닝 기반의 YOLO 네트워크로 학습하여, 마스크 착용 유무를 판별한다. 동일 YOLO 네트워크에 대해 여러가지 조건으로 학습을 수행하고, 학습에 사용되지 않은 검증 데이터를 이용해 정확도가 가장 높은 네트워크의 가중치를 선택하였다. 실험결과, 마스크 착용자는 67.2%, 미착용자는 39.8%의 판별 정확도를 보였다. 미착용자에 대해 낮은 정확도를 보인 이유는 학습 데이터의 부족으로 판단되며, 이를 보완하기 위하여 더 많은 학습데이터를 제작하여 성능을 개선시키고자 한다.
COVID-19 로 인해 마스크 착용이 필수적인 사회가 되면서 마스크를 착용한 상태로 얼굴 사진을 촬영하는 빈도가 증가하고 있다. 그러나 얼굴인식 기반의 보정 및 필터링 기능이 적용된 카메라 애플리케이션은 인물의 마스크 착용 유무를 인식하지 못하여 마스크로 가려진 영역까지 필터 및 색조 기능을 적용시킨다는 한계가 있다. 이러한 문제를 해결하기 위해 본 연구에서는 검출된 얼굴영역에서 마스크 착용 여부 및 마스크 영역을 판단하고 해당 영역을 제외한 나머지 얼굴 영역에 필터링 효과를 적용하는 기술을 구현하였다.
본 논문은 마스크 방식의 관심 영역(ROI, Region Of Interest) 부호 설계와 구현에 대하여 제시한다. 관심 영역에 대한 정지 영상 압축 알고리즘은 웨이블릿 변환과 사용자가 지정한 관심 영역을 결합하여 설계하였다. 즉, 사용자가 지정한 관심 영역을 이용하여 관심 영역 마스크를 생성한다. 양자화 과정에서 웨이블릿 계수들을 각 레벨과 서브밴드로 구분하고 생성된 관심 영역 마스크 정보를 이용하여 양자화 과정을 처리하여 부호화한다. 관심 영역에 대하여서는 높은 영상 품질과 그리고 전체 영상에 대하여서는 높은 압축을 동시에 실현시킬 수 있는 마스크 방식의 관심 영역 부호화 알고리즘을 설계하고 구현하였다.
현재 코로나-19로 인해 많은 사람들이 실내외 사진 촬영에 대한 불편함을 호소하며, 2022년 5월 기준 야외 마스크에 대한 의무 착용이 해제되었지만, 여전히 야외에서 마스크를 착용하는 사람들이 대다수 존재한다. 또한 코로나 발생 후 약 2, 3년간 소중한 가족들 및 지인들과의 찍은 중요한 사진들이 마스크를 착용한 채 그대로 남아있다. 본 논문에서는 파노라마 기술인 Image Stitching 기술을 활용하여 마스크 제거 사진 생성 연구에 대해 기술한다. 본 연구를 통해 사용자들의 실내외 마스크 착용 시 촬영에 대한 불편함을 해소하고 이전 마스크 착용 사진들을 복원함으로써 만족감을 높일 수 있을 것으로 기대한다.
코로나19 팬데믹으로 인해 마스크 착용이 일상화되면서 마스크 착용 얼굴을 식별하는 얼굴인식 연구에 대한 중요도가 높아지고 있다. 안정된 얼굴인식 성능을 위해서는 인식 대상에 대한 풍부한 학습용 이미지 확보가 필요하지만 인물 별로 마스크 착용 얼굴 이미지를 다량 확보하는 것은 쉽지 않다. 본 논문에서는 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 합성하는 새로운 방법을 제안한다. 제안 방법은 동일 인물에 대해 마스크 미착용 얼굴 이미지와 마스크 착용 얼굴 이미지를 쌍으로 컨볼루션 오토인코더에 입력하여 얼굴과 마스크의 기하학적 관계를 학습한다. 학습이 완료된 컨볼루션 오토인코더는 학습에 사용되지 않은 새로운 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 자연스러운 형태로 합성해준다. 제안 방법은 고속으로 대량의 마스크 착용 얼굴 이미지를 생성할 수 있으며, 얼굴 특징점 추출에 기반하는 마스크 합성 방법에 비해 실용적이다.
코로나바이러스로 인하여 전 세계는 어려움을 겪고 있으며, 바이러스를 확산을 막기 위해서 실외에서는 마스크를 쓰는 것이 일상이 되었다. 하지만, 이를 따르지 않는 사람이 일반 시설에 방문할 때 이를 감지하고 경고를 할 수 있는 시스템이 없어, 마스크 미 착용자로 인한 위험성 방지에 취약점을 가지고 있다. 본 연구에서는 OpenCV 라이브러리를 이용한 마스크 착용 여부를 확인하는 시스템을 설계한다. Haar 특징기반 다단계 분류자를 이용하여 마스크 인식 프로세스를 설계하였으며, 마스크 착용 확인 시스템은 경량 컴퓨터인 라즈베리파이 장치 위에 구현하였다. 또한 확인된 사람의 이미지는 클라우드 시스템에 저장할 수 있도록 구현하였다. 본 연구를 통해, 누구나 손쉽게 해당 마스크 착용 확인 시스템을 중소 매장에 설치하여 사용할 수 있으며, 코로나바이러스 확산 방지에 기여할 수 있다고 예상한다.
코로나바이러스-19 팬데믹 이후 매일 수만 명의 환자가 발생하고 있다. 보건당국은 사람들의 생활 안전을 보호하기 위해 공항, 정류장 등 공공장소에서는 반드시 마스크를 착용하라고 지시하고 있다. 마스크를 착용하는 목적은 감염으로부터 신체를 보호하고 바이러스 전파와 확산을 막기 위한 것이다. 공공장소에서는 많은 인원에 대한 일괄적인 마스크 착용 검사를 하기 어렵고, 육안으로 확인하는 마스크 착용 검사 방법은 인파가 몰리는 장소에서 검사 효율이 떨어지며 누락되는 경우도 많이 발생한다. 본 연구에서는 입력 이미지에 존재하는 얼굴 영역을 YOLOv4와 YOLOv5 모델을 통해 예측하여 마스크의 착용 여부를 판단하되, 앙상블 기법을 적용하여 보다 효과적인 BB(Bounding Box) 추출 및 마스크 착용 탐지 기법을 적용한다. 따라서 공공장소의 마스크 착용실태를 효과적으로 모니터링 할 수 있는 방법을 제안한다.
마스크 쓴 얼굴에 대해 랜드마크 분석을 진행하기 위해서는 대량의 마스크가 착용된 얼굴 데이터셋이 필요하다. 본 논문에서는 공개된 얼굴 데이터셋에 자동으로 마스크를 합성하여 대량의 마스크를 착용한 얼굴 데이터셋을 생성하는 시스템을 제안한다. 마스크는 얼굴의 많은 부분을 가리는 물체이다. 따라서 마스크를 쓴 얼굴에 대해서는 일반적인 얼굴 데이터셋으로 학습된 landmark detector가 잘 작동하지 않는다. landmark detector가 잘 작동하게 하려면 마스크를 쓴 얼굴에 대해서 학습을 시켜야 한다. 그러나 현재 마스크를 쓴 얼굴 이미지와 풍부한 landmark 정보를 함께 가지고 있는 데이터셋이 존재하지 않기 때문에 학습에 어려움이 있다. 이 문제를 해결하기 위해 마스크 얼굴 이미지 데이터셋을 만들어내는 방법을 제안하고 마스크를 착용한 얼굴에도 잘 작동하는 랜드마크 검출기를 학습시켜 그 효용을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.