• Title/Summary/Keyword: 마모저항

Search Result 172, Processing Time 0.021 seconds

A Study on the adequate Aggregate Selection of the Exposed Aggregate PCC Pavements (골재노출 콘크리트포장의 적정 골재 선정에 대한 연구)

  • Kim, Young-Kyu;Chae, Sung-Wook;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-127
    • /
    • 2007
  • The exposed aggregate PCC(EAP) pavements have been successfully used in Europe and Japan as low-noise pavements. Coarse aggregate are exposed on the pavement surface texture of EAP by removing mortar of surface. The pavement surface texture should maintain not only low-noise characteristic but also adequate skid resistance level during the performance period. Skid resistance decreased with wearing and polishing of tire and pavement surface due to the repetition of tire-pavement contact. Since the tires mainly contact the exposed coarse aggregate, the shape and rock type of coarse aggregate significantly influence wearing and polishing of EAP pavements. The test for resistance to abrasion coarse aggregate by use of the Los Angeles machine(KS F 2508) and the method of test for resistance to abrasion coarse aggregate by use of the Accelerated Polishing Machine(ASTM D 3319-90) are generally used to evaluate polishing characteristics of aggregate. In this study, polishing of coarse aggregate of different five rock types were evaluated by KS F 2508(LA abrasion test) and ASTM D 3319-90(PSV method). The results of LA abrasion test and PSV method were contrary to each other. Since LA abrasion test is estimated the quantity of abrasion by the impact of aggregate, it may not be adequate to evaluate the polishing of aggregate by the repetition of tire. In the case of PSV method, the resistance of polishing is estimated the skid resistance variation of polished aggregate after repetition of tire. The PSV method is adequate for the evaluation on polishing of coarse aggregate. From the test results of PSV method, it was founded that rock type, specific gravity, coarse aggregate angularity, flat or elongated particles in coarse aggregate are significant to the resistance characteristic of coarse aggregate.

  • PDF

Abrasive Wear of Hybrid Metal Matrix Composites for High Wear Resistance (고 내마모성 혼합 금속복합재료의 연삭마모)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.12-22
    • /
    • 1999
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study wear behavior of $Al/Al_2O_3/C$ hybrid MMCs fabricated by squeeze infiltration method was characterized by the abrasive wear test under various sliding speeds at room and high temperature. Wear resistance of MMCs was improved due to the presence of reinforcements at high sliding speed. Especially wear resistance of carbon hybrid MMCs was superior to other materials because of its solid lubrication of carbon. The friction coefficient of MMCs was not affected by the sliding speed.

  • PDF

The Processing and Characterization of Sol-Gel Derived Ferroelectric PMN Powders and Thin Films (졸-겔법에 의한 강유전성 PMN 분말 및 박막의 제조와 특성)

  • Hwang, Jin-Myeong;Jang, Jun-Yeong;Eun, Hui-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1138-1145
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Projected Line Beam을 이용한 공구의 Crater마모 계측

  • 송준엽;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.166-175
    • /
    • 1991
  • 공구수명에 관한 신뢰성 높은 기준 절삭데이타의 수집은 기계가공시스템을 설계, 운영하는데 중요한 것이다. 이제까지 발표된 절삭공구의 마모측정용 센서로는 절삭저항, AE센사, 진동, 절삭온도 등이 있으며, 이 센서들은 공구마모 특히 플랭크 마모(flank wear) 와 간접적인 관계를 갖고서 별도의 사전 절삭실험에 의해 마모량과 신호 level의 상관관계 및 조정이 필요하기 때문에 본 연구팀에서는 직접적으로 공구마모 상태를 검출하고, 신뢰성이 높은 절삭공구의 마모정보를 얻기 위해 최근 그 응용범위가 확대되고 있는 영상처리기술을 응용한 공구마모 측정장치를 구성하였다.

The Effect of Mn on the Elevated Temperature Sliding Wear Behavior of Fe-20Cr-1C-1Si Hardfacing Alloy (Fe-20Cr-1C-1Si 경면처리 합금의 고온 Sliding 마모거동에 미치는 Mn의 영향)

  • Kim, Geun-Mo;Kim, Jun-Gi;Yang, Yeong-Seok;Gang, Seong-Gun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.937-942
    • /
    • 1999
  • Fe계 합금의 적층결함에너지를 감소시키는 것으로 알려진 Mn이 Fe-20Cr-1C-Si 경면처리 합금의 변형유기 상변태거동과 상온 및 고온 마모저항성에 미치는 영향에 대하여 조사하였다. 15ksi의 접촉응력에 대하여 0~25wt.% Mn을 첨가한 시편은 모두 상온에서 마모손실량이 적은 우수한 마모저항성을 보였는데 Mn 첨가량이 5wt.% 이하인 시편의 경우 마모표면에서 ${\gamma}$$\longrightarrow$$\alpha$\`변형유기 상변태가 발생한 반면 15wt.% 이상 Mn을 첨가한 시편에서는 ${\gamma}$$\longrightarrow$$\varepsilon$변형유기 상변태가 발생하는 것으로 나타났다. 25$0^{\circ}C$까지 고온 마모시험결과 ${\gamma}$$\longrightarrow$$\alpha$\`변형유기 상변태가 발생한 5wt.% 이하 Mn 첨가시편은 Mn 첨가량이 증가할수록 마모손실량이 증가하는 것으로 보아 Mn 첨가는 ${\gamma}$$\longrightarrow$$\alpha$\`변형유기 상변태에 있어서 고온 마모저항성을 저하시키는 것으로 생각되며 이는 Mn이 ${\gamma}$$\longrightarrow$$\alpha$\`변형유기 상변태의 M(sub)d 온도를 감소시키기 때문으로 생각된다. 반면에 ${\gamma}$$\longrightarrow$$\varepsilon$변형유기 상변태가 일어난 15wt.% 이상 Mn 첨가 시편의 경우 Mn 첨가량 증가에 따른 고온 마모손실량의 차이가 없는 것으로 보아 ${\gamma}$$\longrightarrow$$\varepsilon$변형유기 상변태는 ${\gamma}$$\longrightarrow$$\alpha$\`변형유기 상변태에 비해 온도의 존성이 적은 것으로 생각된다.

  • PDF

Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 마모특성)

  • 부후이후이;송정일
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.75-84
    • /
    • 2003
  • The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/A12O3/Al and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, $\textrm{Al}_2\textrm{O}_3$ particles and SiC particles on the wear behavior of the composites were investigated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction(COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.

Effects of carbon concentration and temperature on the sliding wear resistance in austenitic Fe-10Cr-10Ni-xC alloys

  • Sin, Gyeong-Su;Kim, Seon-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.35.1-35.1
    • /
    • 2009
  • 오스테나이트계 Fe-10Cr-10Ni-xC(x=0.2, 0.5, 0.6and 0.7wt.%)합금에서 변형유기마르텐사이트상변태가 Sliding 마모저항성에 미치는영향을 탄소 및 온도에 따라 조사하였다. 변형유기마르텐사이트상변태가 미치는 영향을 살펴보기 위해 석출물적고 grain의 크기가 비슷한 합금내에서 조사하였다. 변형유기마르텐사이트상변태가 일어나는데 필요한 에너지를 변형률-응력 곡선을 통해 구할 수 있으며, 이를 임계변형에너지라 규명했다. 그 결과, 상온에서 Carbon 함량에 따라 변형유기마르텐사이트상변태가 일어나는데 필요한 임계변형에너지는 증가하였으며, Sliding 마모저항성은 저하되었다. 이는 carbon이 오스테나이트 안정화원소(austenite stabilityelement)이므로 carbon 함량이 증가할수록 변형유기마르텐사이트상변태가 유발하기위해서는 많은 에너지가 필요하기 때문에 low C에 비해 high C의 마모저항성이 저하된 것으로 사료된다. 또한 변형유기마르텐사이트상변태가 고온 Sliding 마모저항성에 미치는 영향을 살펴보기 위해 Fe-Cr-Ni-xC(x=0.2, 0.5, 0.6 and 0.7wt.%)합금을 온도별(25, 100, $300^{\circ}C$)로 조사하였다.

  • PDF

Research on Abrasion Resistance of Artificial Lightweight Concrete (인공경량콘크리트의 마모저항성에 관한 연구)

  • Lee, Chang-Soo;Yoo, Bo-Sun;Nam, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.205-206
    • /
    • 2010
  • This study is a result of laboratory work about abrasion of artificial lightweight concrete and normal concrete in an equal condition, although the bigger a percentage of W/B is, the more increasing artificial lightweight concrete's persentage of loss, in case of mixing Flyash, artificial lightweight concrete percentage of loss is decreasing and in case of mixing W/B 30% and Flyash 15%, the difference of artificial lightweight concrete and normal concrete's percentage of loss is about 3%, there is little difference.

  • PDF

A STUDY ON WEAR RESISTANCE OF FLOWABLE COMPOSITE RESINS (유동성 복합레진의 마모저항성에 관한 연구)

  • Yun, Yeon-Hee;Kim, Jung-Wook;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.217-225
    • /
    • 2002
  • When we use the flowable resin on the primary molars for quick handling, one of the most important property is the wear resistance. This study was performed to compare the wear resistance characteristics of four flowable composite resins [Arabesk flow (group 1), Tetric flow (group 2), Aeliteflow (group 3), Filtek flow (group 4)] to that of one control composite resin [Z100 (group 5)]. Specimen discs(n=10), 10mm wide and 2mm thick, were stored in distilled water at $37^{\circ}C$ for 7 days prior to testing. The specimens were subjected to 50,000 strokes at 2 Hz on the MTS system. During the test, the following parameters were maintained: the lateral excursion at 0.4mm, occlusal force at 2-100N with a force profile in the form of a half sine wave. The measurements of volume loss, depth of wear, and Vicker's hardness number of composite resins, and SEM observations of the polished and abraded surfaces were established. One-way ANOVA and Scheffe's multiple comparison test were employed to detect statistically significant differences among the flowable composite resin groups and the control composite group at P<.05. The following results were obtained: 1. Group 3 showed the least volume loss, while group 4 showed the greatest. The mean volume loss increased in the following order: group 3

  • PDF

Evaluation of Dry Tribological Characteristics of Hybrid Metal Matrix Composites with Temperature Rising (온도 상승에 따른 혼합금속복합재료의 건식 마찰특성 평가)

  • Wang, Yi-Qi;Afsar, Ali-Md.;Song, Jung-Il
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) were manufactured by squeeze casting method investigated for their tribological properties. The pin specimens had different ratios of fiber to particle content but their total weight fraction was constant at 20 wt. %. Tribological tests were performed with a pin-on-disk friction and wear tester. The investigation of the dry tribological characteristics of hybrid MMCs were carried out at room temperature and elevated temperature of$100^{\circ}C$ and$150^{\circ}C$. The morphologies of worn surfaces were examined by scanning electron microscope (SEM) to observe tribological characteristics and investigate wear behavior. The results revealed that the wear resistance improved with the content of SiCp increased of the planar random (PR) MMCs at room temperature. At the elevated temperature, it revealed that the wear resistance of normal (N) MMCs was superior to that of the PR-MMCs due to PR-fibers were easily pulled out holistically from the worn surface. Meanwhile, the coefficient of friction decreased with the temperature increasing.