• Title/Summary/Keyword: 리튬 추출

Search Result 55, Processing Time 0.026 seconds

Recovery of Li from the Lithium Containing Waste Solution by D2EHPA (리튬함유 폐액으로부터 D2EHPA에 의한 리튬의 회수)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Lee, Ki-Woong;Son, Hyun-Tae
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • A study on the solvent extraction for the recovery of Li from lithium-containing waste solution was investigated using $D_2EHPA$ as an extractant. The experimental parameters, such as the pH of the aqueous solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percentage of Li was increased with increasing the equilibrium pH. More than 50% of Li was extracted in eq. pH 6.0 by 20% $D_2EHPA$. From the analysis of McCabe-Thiele diagram, 95% of Li was extracted by four extraction stage at phase ratio(O/A) of 3.0. Stripping of Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 90 ~ 120 g/L of $H_2SO_4$ was effective for the stripping of Li. Finially, Li was concentrated about 11.85 g/L by continuous stripping process, and then lithium carbonate was prepared by precipitation method.

Solvent Extraction of Lithium Ion in Aqueous Solution Using TTA and TOPO (TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출)

  • Lee, Jeon-Kyu;Jeong, Sang-Gu;Koo, Su-Jin;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • For the purpose of development of the extraction process of lithium ion from concentrated water eliminated from desalination process, an experimental research on the solvent extraction of lithium ion from aqueous solutions was performed. The effects of operating parameters, such as concentration of extractant, ratio of extracting solution/aqueous solution, pH of aqueous solution, were examined. The effect of sodium chloride, the major component of sea water, was also examined. Lithium ion in aqueous solutions of pH=10.2~10.6 adjusted by ammonia solution was most effectively extracted by extracting solution composed of 0.02 M TTA and 0.04 M TOPO in kerosine. The addition of sodium chloride in lithium aqueous solution significantly interfered the extraction of lithium ion.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Solvent Extraction of Ni and Li from Sulfate Leach Liquor of the Cathode Active Materials of Spent Li-ion Batteries by PC88A (폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)의 황산(黃酸) 침출용액(浸出溶液)에서 PC88A에 의한 Ni 및 Li의 용매추출(溶媒抽出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin;Son, Seong-Ho;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.58-64
    • /
    • 2012
  • A study on the solvent extraction for the separation and recovery of Ni and Li from the leaching solution of active cathode materials of Li-ion batteries was investigated using PC88A(2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester). The experimental parameters, such as the pH of the solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percent of Ni and Li and separation factor of Ni/Li were increased with increasing the equilibrium pH. More than 99.4% of Ni and 28.7% of Li were extracted in eq. pH 8.5 by 25% PC88A and the separation factor of Ni/Li was 411.6. From the analysis of McCabe-Thiele diagram, 99% of Ni was extracted by three extraction stages at phase ratio(A/O) of 1.5. Stripping of Ni and Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 50-60g/L of $H_2SO_4$ was effective for the stripping of Ni.

Solvent Extraction of Li(I) from Weak HCl Solution with the Mixture of Neutral Extractants Containing FeCl3 (FeCl3를 함유한 중성추출제의 혼합용매로 약한 염산용액으로부터 리튬(I)의 용매추출)

  • Xing, Weidong;Lee, Seah;Lee, Manseung
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.53-58
    • /
    • 2018
  • Solvent extraction of Li(I) from weak HCl solution was investigated by the mixture of TBP/MIBK with other neutral extractants such as Cyanex 923, TOPO and TOP. The TBP/MIBK organic phase was loaded with 0.1 M $FeCl_3$ at different HCl concentrations (1-9 M). Extraction of Li(I) from weak HCl solution is related to the stability of $FeCl_3$ in the organic mixture. As HCl concentration increased in preparing the loaded TBP phase, the stripping percentage of Fe(III) during the extraction of Li(I) became reduced and thus Li(I) could be extracted by ion exchange reaction with hydrogen ion in the organic. The concentration of TBP in the extractant mixture affected the stability of $FeCl_3$. Compared to TBP, Fe(III) was easily stripped from the loaded MIBK and thus no Li(I) was extracted by the mixture with MIBK. The nature of neutral extractant with TBP/MIBK showed little difference in the extraction of Li(I) and stripping of Fe(III).

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II) (Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2020
  • In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.

Extractive Metallurgy of Lithium (리튬의 제련기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.3-15
    • /
    • 2022
  • Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey (터키 리튬 함유 붕소광상에서 산출하는 스멕타이틱-점토로부터의 리튬 추출)

  • Lee, Won-Jong;Yoon, Soh-joung;Chon, Chul-Min;Heo, Chul-Ho;Lee, Gill-Jae;Lee, Bum-Han;Cicek, Murat
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.167-177
    • /
    • 2016
  • Smectitic clays, occurring in Kırka and Bigadiç boron evaporite deposits formed in Miocene playa lake environment in Turkey, contain $LiO_2$ 0.02-0.21% and 0.16-0.30%, respectively, and boron tailings are also reported to contain $LiO_2$ 0.04-0.26%. Lithium in smectitic clays was identified to be retained in hectorite. The XRD results revealed that hectorite was contained in 25.7% and 79.7% of Kırka and Bigadiç deposit samples respectively. In this study, we selected a clay sample from each deposit with lithium content of ~0.18% and estimated extractable lithium by acid treatment and roasting method commercially applicable to lithium resources, such as lepidolite and hectorite. When 1 g of crushed clay (particle size less than $74{\mu}m$) was reacted with 200 mL of 0.25 M HCl solution, the amount of lithium dissolved increased with the increase of reaction time up to 10 hours for both samples. Reaction time longer than 10 hours did not significantly increased the amount of lithium dissolved. After 10 hours of reaction, 89% of lithium in the clay sample from the Kırka deposit was dissolved, while 71% of lithium was dissolved from the Bigadiç deposit tailing sample. 87% of lithium in the clay sample from the Kırka deposit was extracted and 82% of lithium was extracted from the Bigadiç deposit tailing sample by the roasting extraction method, where clays were leached after a thermal treatment at $1,100^{\circ}C$ for 2 hours with $CaCO_3$ and $CaSO_4$.

Statistical analysis of the battery pack design by applying the random extraction and screening technique (랜덤 추출과 스크리닝 기법을 적용한 배터리 팩 설계의 통계적 분석)

  • Lee, Pyeong-Yeon;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.176-177
    • /
    • 2016
  • 본 논문에서는 효율적인 배터리 팩 설계를 위해 300개의 18650 리튬이온 셀의 전기적 특성을 비교분석하였고 통계적 분석을 기반으로 스크리닝 기법을 적용하였다. 300개의 고출력 원통형 18650 리튬이온 배터리 셀을 사용하여 전류적산법 기반 방전 용량(discharged capacity)과 HPPC(hybrid pulse power Characterization) test 기반 충전저항과 방전저항을 추출하였다. 추출한 파라미터를 바탕으로 통계적 분석을 수행하고 스크리닝 기법을 적용하였다. 스크리닝 기법을 적용한 셀과 랜덤으로 추출된 셀을 비교 및 분석하였다.

  • PDF

Recovery of Cobalt from Waste Cathodic Active Material Generated in Manufacturing Lithium Ion Batteries by Hydrometallugical Process (리튬이온전지 제조공정의 폐양극활물질로부터 습식제련공정에 의한 코발트의 회수)

  • Swain Basudev;Jeong Jinki;Kim Min Seuk;Lee Jae-chun;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.28-36
    • /
    • 2005
  • A hydrometallurgical process to leach cobalt from the waste cathodic active material, $LiCoO_{2}$, and subsequently to separate it by solvent extraction was developed. The optimum leaching conditions for high recovery of colbalt and lithium were obtained: 2.0 M sulfuric acid, 5 $vol.\%$ hydrogen peroxide, $75^{\circ}C$ leaching temperature, 30 minutes leaching time and an initial pulp density of 100 g/L. The respective leaching efficiencies for Co and Li were $93\%$ and $94.5\%$. About $85\%$ Co was extracted from the sulfuric acid leach liquor containing 44.72 g/L Co and 5.43 g/L Li, using 1.5 M Cyanex272 as an extractant at the initial pH 5.0 and in organic to aqueous phase ratio of 1.6:1 under the single stage extraction conditions. The Co in the raraffinate was completely extracted by 0.5 M Na-Cyanex272 at the inital pH 5.0, and an organic to aqueous phase ratio of 1;1. The cobalt sulfate solution of higher than $99.99\%$ purity could be recovered from waste $LiCoO_{2}$, using a series of hydrometallurgical processes: sulfuric acid leaching of waste $LiCoO_{2}$- solvent extraction of Co by Na-Cyanex 271 - scrubbing of Li by sodium carbonate solution - stripping of Co by sulfuric acid solution.