DOI QR코드

DOI QR Code

Solvent Extraction of Ni and Li from Sulfate Leach Liquor of the Cathode Active Materials of Spent Li-ion Batteries by PC88A

폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)의 황산(黃酸) 침출용액(浸出溶液)에서 PC88A에 의한 Ni 및 Li의 용매추출(溶媒抽出)

  • Received : 2012.09.19
  • Accepted : 2012.11.12
  • Published : 2012.12.31

Abstract

A study on the solvent extraction for the separation and recovery of Ni and Li from the leaching solution of active cathode materials of Li-ion batteries was investigated using PC88A(2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester). The experimental parameters, such as the pH of the solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percent of Ni and Li and separation factor of Ni/Li were increased with increasing the equilibrium pH. More than 99.4% of Ni and 28.7% of Li were extracted in eq. pH 8.5 by 25% PC88A and the separation factor of Ni/Li was 411.6. From the analysis of McCabe-Thiele diagram, 99% of Ni was extracted by three extraction stages at phase ratio(A/O) of 1.5. Stripping of Ni and Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 50-60g/L of $H_2SO_4$ was effective for the stripping of Ni.

리튬이온전지 양극활물질의 황산침출액으로부터 니켈과 리튬을 분리 회수를 위하여 PC88A를 사용하여 니켈 및 리튬의 용매추출 연구를 실시하였다. 수용액상의 pH, 추출제의 농도 및 상비 변화 등 니켈과 리튬의 추출에 영향을 미칠 수 있는 인자들에 대한 추출 실험을 실시하였다. 실험 결과 평형 pH가 증가할 수록 니켈 및 리튬의 추출율 및 분리계수값이 증가하였고, pH 8.5에서 25% PC88A에 의해 니켈의 경우 99.4%, 리튬의 경우 28.7%의 최대 추출율을 보였다. 이 경우 분리인자값은 411.6을 나타내었다. McCabe-thiele 도표 분석 결과로 부터 니켈의 경우 상비(A/O) 1.5에서 3단으로 99%이상 추출이 가능하였다. 한편 탈거액으로 황산을 사용하였고, 최적의 Ni의 탈거를 위해서 필요한 황산농도는 50-60 g/L 이었다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. J. Xu, H.R. Thomas, R.W. Francis, et al., 2008 : "A review of processes and technologies for the recycling of lithiumion secondary batteries," J. Power sources 177, 512-527. https://doi.org/10.1016/j.jpowsour.2007.11.074
  2. Dorella, G., Mansur, M., 2007 : "A study of the separation of cobalt from spent Li-ion battery residues," J. Power sources 170, 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  3. Swain, B., Jeong., Lee, J.C. et al., 2007 : "Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium batteries," J. Power sources 167, 536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
  4. Zhang, W.P., Yokoyama, T., Itabashi, O., et al., 1998 : "Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries," Hydrome tallurgy 47, 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  5. Shin, S.M., Kim, N.H., Sohn, J. S., 2005 : "Development of a metal recovery process from Li-ion battery wastes," Hydrometallurgy 79, 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  6. T. Georgi-Maschler., B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, 2012 : "Development of a recycling process for Liion batteries," J. of Power Source 207, 173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
  7. JP Patent 2004-307983 "Recovery of nickel from nickel containing solution."
  8. JP Patent 2006-57142 "Method for recovery of lithium"

Cited by

  1. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co vol.179, 2017, https://doi.org/10.1016/j.seppur.2017.02.010
  2. A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis vol.57, pp.10, 2012, https://doi.org/10.3365/kjmm.2019.57.10.656
  3. Application of Multistage Concentration (MSC) Electrodialysis to Concentrate Lithium from Lithium-Containing Waste Solution vol.10, pp.7, 2012, https://doi.org/10.3390/met10070851
  4. 재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교 vol.30, pp.3, 2012, https://doi.org/10.7844/kirr.2021.30.3.55