• 제목/요약/키워드: 리튬염

검색결과 99건 처리시간 0.024초

LiCl-$Li_2O$ 용융염에서의 리튬의 반연속적 전기정련 (Semi-Continuous Electrowinning of LiCl-$Li_2O$ Molten Salt)

  • Jin-Mok, Hur;Chung-Seok, Seo;Sun-Seok, Hong;Dae-Seung, Kang;Seong-Won, Park
    • 방사성폐기물학회지
    • /
    • 제2권3호
    • /
    • pp.211-217
    • /
    • 2004
  • 한국원자력 연구소에서 추진하고 있는 사용후핵연료 관리 이용 기술개발의 경제성과 환경친화성을 증진시키기 위해서 리튬회수 기술을 개발하고 관련 검증실험을 수행하였다. 본 기술은 1) 환원전극과 결합된 비전도성 다공성 마그네시아 용기를 이용한 용융염상에서의 산화리튬 전해, 2) 마그네시아 용기를 용융염 액위 이상으로 상승시켜, 용기 내에 회수된 리튬의 용융염으로부터의 분리, 3) 회수된 리튬의 진공 사이펀을 사용한 별도 저장조로의 이송이라는 3단계의 결합으로 특징지어 진다. 개발된 기술에 의하여 염화리튬-산화리튬 용융염으로부터 95% 이상의 수율로 리튬을 반연속적으로 회수할 수 있었다.

  • PDF

텅스텐 산화물 전해 도금 박막 제조 및 리튬 이차전지용 음극 특성 평가 (Tungsten Oxide Electrodeposits for the Anode in Rechargeable Lithium Battery)

  • 이준우;최우성;신헌철
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.130-130
    • /
    • 2012
  • 리튬이차전지의 음극재로 적용하기 위해, 텅스텐 산화물을 구리 기재 위에 전해 도금하였다. 이를 위해 텅스텐 산화물 염이 포함된 도금 조 내에서 다양한 도금 조건을 사용하여 산화물을 구리 기재 위에 박막 형태로 형성시켰다. 형성된 박막 산화물의 조성 및 구조적 특성을 분석하였고, 특히, 리튬 염을 포함하는 유기 용매 하에서 순환 전위 실험을 수행하여, 텅스텐 산화물 전해 도금 박막이 리튬이차전지의 음극재로서 리튬과 가역적으로 반응하는지 분석하였다.

  • PDF

리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성 (Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries)

  • 김일진;김기수;이진홍
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.305-309
    • /
    • 2020
  • 본 연구에서는 에테르가 기능화된 이온성 액체인 [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite)와 리튬염인 LiTf2N (lithium bis(trifluoromethanesulfonyl)imide)을 혼합하였고, 리튬염의 함량을 조절하여 전해질을 특성을 조사하였다. 제조된 전해질은 리튬염 혼합에 따라 불투명해지고 흐름성이 제한된 열방성 액정을 형성하였으며, 이때 리튬염의 함량에 따라 형성되는 이온성 액정의 자기조립구조와 이온 전도 현상을 다양한 분광학적 분석을 통해 조사하였다. 그 결과 이온성 액정의 향상된 이온전도도는 정렬된 구조를 통한 이온 전도 특성과 관계가 있음을 확인하였으며, 리튬이온전지 특성 평가에서 우수한 전기화학적 특성을 나타냄을 확인하였다.

칼슘 술폰산염 컴플렉스 그리스 합성과 특성 연구 (Studies on the synthesis and characteristics of calcium sulfonate complex grease)

  • 우재구;이동규;하기룡
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.8-15
    • /
    • 2019
  • 본 연구에서는 칼슘 술폰산염 컴플렉스 그리스와 리튬 컴플렉스 그리스를 합성하고, 그리스의 일반 물성, 유변학적 특성 및 윤활성능을 비교하였다. 내열성 시험인 적점 시험에서 칼슘 술폰산염 컴플렉스 그리스의 열 안정성은 섭씨 300도 이상, 리튬 컴플렉스 그리스는 섭씨 245도로 측정되었다. 점도시험에서 칼슘 술폰산염 컴플렉스 그리스는 7.0 파스칼 초, 리튬 컴플렉스 그리스는 4.5 파스칼 초로 측정되었다. 따라서 칼슘 술폰산염 컴플렉스 그리스가 리튬 컴플렉스 그리스보다 내열성 및 점착성면에서 우수함을 확인하였다. 4-ball 내마모시험에서 칼슘 술폰산염 컴플럭스 그리스는 0.43 밀리미터, 리튬 컴플럭스 그리스는 0.85 밀리미터로 측정되었고, 4-ball 내하중성 시험에서 칼슘 술폰산염 컴플렉스 그리스는 620 킬로그램중, 리튬 컴플렉스 그리스는 125 킬로그램중 으로 측정되었다. 따라서, 칼슘 술폰산염 컴플렉스 그리스가 리튬 컴플렉스 그리스보다 내마모성 및 내하중성에서 우수하였다. 위 시험결과로 고온 및 고하중의 윤활에서는 칼슘 술폰산염 컴플렉스 그리스가 리튬 컴플렉스 그리스보다 더 효과적인 것을 알 수 있었다.

전지기술의 국내외 연구동향 (The Present and the Prospects for Batteries)

  • 이주성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 1999
  • 시간과 공간의 구애를 받지 않는 양질의 음성, 화상, 문자정보의 교환을 위한 노력으로 디지털 휴대폰과 휴대용 컴퓨터가 등장하면서 음성과 문자정보의 교환분야에 커다란 진보를 이룩하였다. 그러나 현재는 휴대폰이 음성정보에 문자정보교환이 추가된 상황이기 때문에, 아직도 관련 정보교환기술 및 기기개발이 진행되고 있다. 앞으로 휴대폰과 휴대용 컴퓨터의 기능을 통합하고 화상정보까지 결합된 휴대용 정보기기를 위해서는 전자회로의 집적화 및 통신속도 증대가 필수적이다. 또한 이들 휴대용 정보기기를 구동시키기 위한 전력도 증가될 것으로 예측되기 때문에, 현재 전원으로 사용되는 2차전지보다 에너지 밀도가 더욱 증패된 전지가 요구될 것으로 예상된다. 그리고 내연기관의 배기에 의해 발생되는 환정오염문제를 해결하기 위한 방법중의 일환으로 전기자동차 개발이 진행되고 있으며, 이들 전기자동차에 2차전지를 장착하기 위해서 경제성이 있고, 고속충전이 가능하고, 안전성이 높은 고에너지 밀도의 2차 전지 개발이 요구되고 있다. 현재 2차전지는 음극재료나 양극재료에 따라 낚축전지, 니켈/카드륨(Ni/Cd) 전지, 니켈/수소(Ni/MH) 전지, 라륨 2 차전지등이 있으며, 전극재료의 고유특성에 의해 전위와 애너지 밀도가 결정된다. 특히 리튬 2차전지는 리튬의 낮은 산화환원전위와 분자량으로 인해 에너지 밀도가 높기 때문에 앞에서 언급한 휴대용 전자기기의 구동전원으로 많이 사용되고 있다. 리튬 2차전지는 음극 재료가 금속리튬인 경우는 리튬금속으로, 탄소재료인 경우는 리튬이온이라 하며, 한편으로 전해질이 고체 고분자이거나 혹은 역체 유기용매와 리튬염을 고분자와 혼성시킨 겔(gel)인 경우는 고분자로, 전해짙이 리튬염이 전리되어 있는 유동성 액체일 경우는 고분자를 생략하여 구분하고 있다. 즉 리튬금속 2 차전지(LB), 리튬이온 2 차전지(LIB), 리튬금속 고분자 2차전지(LPB), 리튬 이온 고분자 2차전지(LIPB)로 크게 구분된다. 금속리듐을 음극으로 사용하고 전해질로는 리튬염이 전리되어 있는 액체유기용매 를 사용한 리튬금속 2차전지는, 금속리튬전극이 충방전 과정을 반복하면서, 전리된 리튬이 균일하게 산화환원되지 못하고 표변에서 양극방향으로 성장하는 수지상 (dendrite) 현상으로 인해 안전성 확보에 문게가 있었다. 리튬과 알루미늄 합금형태로 음극에 사용한 동전형 전지는 상용화 되었지만, 이러한 단점을 개선하기 위해 리튬이온이 금속으로 석활되는 환원반응전위보다 높은 전위에서 전극재료가 충전되면서 리튬이온이 저장되고, 방전되면서 배출되는 탄소를 음극재료로, 그리고 리튬이온이 충방 전시 가역적으로 삼입 탈리되는 층상의 리튬금속산화물을 양극으로 구성하고, 엑체 전해질과 다공성 고분자 분리막을 사용한 것이 LIB이다. LIB에서 리튬이온의 이동이 가능한 액체전해질의 가능을 고분자 전해질이 대신함으로서 보다 높은 안정성을 확보 한 전지가 LIPB 이다. 또한 고분자 전해질을 사용한 경우 금속리튬상에서의 수지상 성장이 저하되는 현상이 관찰됨으로서, 이론용량이 3,860mAh/g 에 달하는 리튬금속 혹은 합금을 고분자 전지에서 음극으로 사용하고자 하는 2 차전지가 LPB 이다. 리튬 2차전지는 비록 1989년 액체전해질을 사용한 금속리튬 2차전지의 실패전력을 안고있지만 궁극적으로는 이론적으로 최대의 에너지밀도를 가지고 있는 LPB를 지 향할 것으로 예상되지만 가까운 장래에 실현되기는 어려울 것이다. 따라서 향후의 라튬 2차전지의 전개방향은 현재의 LIB를 고분자 전해질을 채용하는 LIPB로 진행시커면서 저가의 전극재료개발을 지속적으로 추진할 것으로 예상된다. 현재 리튬 2차전지는 소형전지에 국한되고 있지만 전기자동차나 전력저장용으로 이를 대형화시커기 위해서는 열적특성이 우수하고 저가인 전극재료개발이 선행되야하기 때문에, 저가의 탄소재료와 코발트산화물을 대신할 수 있는 철, 망칸 또는 니켈산 화물의 개발이 필요하다.

  • PDF

배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로 (Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate)

  • 노인혜;성기준
    • 환경영향평가
    • /
    • 제32권2호
    • /
    • pp.123-133
    • /
    • 2023
  • 이차전지 생산공정에서 발생한 폐수에는 리튬과 고농도의 황산염을 포함하고 있으며 최근에는 에너지 밀도가 높은 High Ni 계열의 전구체 수요가 급증하면서 니켈의 배출도 우려되는 상황이다. 리튬과 황산염의 경우 현재 수질오염물질 배출허용기준에 포함되어 있지 않으므로, 이들이 적절하게 처리되지 못하고 배출되었을 경우 향후 환경에 대한 부정적 영향이 클 수 있을 것으로 예상된다. 따라서 본 연구에서는 물벼룩(Daphnia magna)과 발광박테리아(Aliivibrio fischeri)를 이용하여 이차전지 생산공정 배출수에 포함되어 배출될 수 있는 잠재오염물질인 리튬과 니켈 및 황산염의 생태독성을 평가하였다. 생태독성평가 결과, 물벼룩 24시간, 48시간 리튬 EC50 값은 18.2mg/L, 14.5mg/L, 니켈의 경우 7.2mg/L와 5.4mg/L, 황산염 EC50 값은 4,605.5mg/L, 4,345.0mg/L로 나타나, 물벼룩의 경우 물질 및 반응시간(24시간, 48시간)에 따른 생태독성 차이가 있음을 알 수 있었다. 리튬, 니켈, 황산염에 대한 물벼룩의 EC50을 비교하면, 니켈의 24h 및 48h EC50은 리튬에 비해 39.6-37.2%, 황산염에 비해서는 0.1-0.2% 수준으로 세 물질 중 가장 독성이 강한 것으로 나타났다. 그 차이는 노출시간과 상관없이 유사한 수준으로 나타났다. 반면, 황산염의 EC50은 리튬과 니켈에 비해 각각 253.0-299.7%, 639.5-804.6% 수준으로 세물질 중 독성이 가장 약한 것으로 나타났다. 발광박테리아의 리튬에 대한 30분 EC50 값은 2,755.8mg/L, 니켈은 7.4mg/L, 황산염 EC50 값은 66,047.3mg/L로 니켈과는 달리 리튬과 황산염에 대한 물벼룩과 발광박테리아 생물 종별 민감도 차이도 있음을 확인하였다. 이차전지 배출수 관리를 위해 향후 이들 물질에 대한 복합 독성에 관한 연구가 필요할 것으로 판단된다.

Poly(ethylene oxide)-Li계 고분자 전해질의 전기화학적 특성 및 물리적 성질 (Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li based Polymer Electrolyte)

  • 김형선;조병원;윤경석;전해수
    • 공업화학
    • /
    • 제7권3호
    • /
    • pp.433-442
    • /
    • 1996
  • 분자량이 큰 Poly(ethylene oxide)[PEO] 고분자에 $LiClO_4$, $LiCF_3SO_3$ 등의 리튬염과 ethylene carbonate(EC), propylene carbonate(PC) 등의 가소제를 고정화시킨 고분자 전해질의 전기화학적 특성 및 물리적 성질을 조사하였다. 가소제가 첨가된 PEO-Li계 고분자 전해질은 상온에서 $10^{-4}S/cm$의 이온 전도도를 보였고 4.5 V(vs. $Li^+/Li$)까지 높은 전기화학적인 안정성을 나타냄으로써 리튬 2차전지에 적용 가능한 것으로 나타났다. 리튬염 및 가소제의 첨가에 따라 PEO의 결정상이 감소되었고 특히 $LiClO_4$, PC등이 $LiCF_3SO_3$, EC 등에 비하여 더 효과적인 것으로 나타났다. 리튬염의 농도가 증가할수록 고분자 전해질의 유리전이온도($T_g$)는 증가되었으며 반면에 융점온도($T_m$)는 감소하는 것으로 나타났다. 가소제가 첨가된 고분자 전해질은 $6^{\circ}C$에서 결정화 되었다.

  • PDF

플렉시블 전기변색 소자를 위한 고분자 전해질 멤브레인 (Polymer Electrolyte Membranes for Flexible Electrochromic Device)

  • 이지현;강문성
    • 멤브레인
    • /
    • 제30권5호
    • /
    • pp.333-341
    • /
    • 2020
  • 본 연구에서는 플렉시블 전기변색 소자(ECD)에 적용하기 위한 고분자 전해질 멤브레인의 최적 설계 조건을 도출하고자 하였다. 전해질 멤브레인의 제조를 위한 기저 고분자로 접착력 및 투명도가 우수한 polyvinyl butyral (PVB)을 선정하였으며 가소제로는 adipate계 고분자를 사용하였다. 실험결과, ECD 성능에 가장 큰 영향을 미치는 인자는 전해질 멤브레인의 이온 전도도 및 투과도임을 확인할 수 있었다. 또한 상기 인자는 리튬염의 해리 특성과 밀접한 관계를 갖고 있음을 알 수 있었다. 종합적으로 다양한 리튬염 중 음이온의 크기가 큰 LiTFSI 염이 25 wt.% 정도의 함량으로 용해될 때 최적의 ECD 성능을 확인할 수 있었다.

Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구 (A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process)

  • 주성호;신동주;이동석;신선명
    • 자원리싸이클링
    • /
    • 제32권1호
    • /
    • pp.42-49
    • /
    • 2023
  • Li-Al-Si를 함유한 유리세라믹 순환자원은 인덕션, 방화유리, 비젼냄비 등 리튬의 전체 소비량 중 14%로 리튬이온전지 다음으로 많이 쓰인다. 따라서 리튬의 수요가 폭발하고 있는 현재 새로운 리튬 자원을 찾아야 하고 이로부터 리튬의 회수 연구가 필요하다. 본 연구는 이러한 맥락하에 Li을 함유한 새로운 순환자원인 Li-Al-Si 유리세라믹으로부터 리튬을 회수하기 위한 연구를 수행하였다. 본 연구에서는 1.5% Li, 9.4% Al, 28.9% Si를 함유한 Li-Al-Si 유리세라믹 중 방화유리를 원료물질로 사용하였다. 방화유리로부터 리튬을 회수하기 위한 공정은 크게 칼슘 염을 투입한 건식 배소 공정과 수침출 공정으로 나뉜다. 325 mesh 이하로 분쇄된 방화유리 시료를 열처리 전과 열처리 후 칼슘 염을 투입하여 침출 실험을 비교 진행하였고 칼슘 염과 Li-Al-Si 유리세라의 투입비율에 따른 침출율, 칼슘 염 배소 온도에 따른 침출 연구도 비교 수행하였다. 수침출 연구에서는 온도, 시간, 고액비, 그리고 연속 침출횟수에 따라 리튬의 침출율 및 회수율을 비교하였다. 그 결과 Li-Al-Si를 함유한 유리세라믹 방화유리는 열처리를 반드시 수행하여 베타 형태의 스포듀민으로 상변화 시켜야 하며 이로부터 CaCO3 염을 Li-Al-Si를 함유한 유리세라믹 방화유리와 6:1의 비율로 투입하여 1000℃이상에서 배소한 후 4회 이상 연속 침출하여 리튬의 회수율을 98% 이상 획득하였고 이때 리튬의 농도는 200mg/L였다.