• Title/Summary/Keyword: 리브 간격

Search Result 24, Processing Time 0.021 seconds

Numerical Analysis of Thermal and Flow affected by the variation of rib interval and Pressure drop Characteristics (리브 간격 변화에 따른 열.유동 수치해석 및 압력 저하 특성)

  • Chung, Han-Shik;Lee, Gyeong-Wan;Shin, Yong-Han;Choi, Soon-Ho;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • The flow characteristics and heat transfer augment on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow has been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio were 0.07 and rib height to channel height ratio was set as e/H=0.117 for various PR(rib pitch-to-rib height rate) between 8~14, respectively. The SST k-${\omega}$ turbulence model and v2-f turbulence model were used to find out the heat transfer and the flow characteristics of near the wall which are suited to obtain realistic phenomena. The numerical analysis results show turbulent flow characteristics, heat transfer enhancement and friction factor as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow. and v2-f turbulence model simulation results have a good agreement with experimental values.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

Buckling Strength of Orthogonally Stiffened Steel Plates under Uniaxial Compression (일축압축을 받는 직교로 보강된 판의 좌굴강도)

  • Choi, Dong Ho;Chang, Dong Il;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.731-740
    • /
    • 1998
  • Orthogonally stiffened steel plates are used for orthotropic steel decks of long-span bridges because of high degree of flexural and torsional resistances and good load-distribution behavior. An analytic study is presented for evaluating the buckling strength of orthogonally stiffened plates subjected to uniaxial compression. By using the plate theory, the buckling stress under overall and partial buckling modes, is derived. Parametric studies are performed to show the effects of the stiffness and the number of transverse and longitudinal ribs on the buckling strength. The results show quantitatively strong influence of stiffness and spacing of longitudinal and transverse ribs.

  • PDF

The Modified Coefficient of the Orthotropic Flexural Rigidity for Stiffened Plates with Rectangular Ribs Considering the Dimensions of Ribs (리브 제원을 고려한 평강 리브 보강판의 직교이방성 휨 강성 수정 계수)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • In this study, to improve on the inaccurate results of the orthotropic plate analysis, we aim to propose a modified coefficient of the orthotropic flexural rigidity for stiffened plates with rectangular ribs considering the dimensions of ribs. The sensitivity of the flexural rigidity and the maximum displacement according to the dimensions of stiffened plates were analyzed and the parametric study on the modified coefficient of the orthotropic flexural rigidity of stiffened plates was performed. The results show that the ratio of modified coefficients can be expressed as a function for each rib height, space and thickness regardless of plate thickness and the modified flexural rigidity can be easily estimated from the ratio functions of modified coefficients. The application of the coefficient function to various types of stiffened plates with different boundary conditions, aspect ratios, rib arrangement and loading size shows that the proposed function improves the accuracy of the orthotropic plate analysis compared with the results of the reference. Therefore, the orthotropic plate analysis of stiffened plates with rectangular ribs can easily achieve more accurate results using the coefficient function proposed in this study.

The Effect of the Loading Size on Displacements of Stiffened Plates with Open Ribs (재하 크기가 개단면 리브 보강판의 처짐에 미치는 영향)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • The objective of this study is to determine the effect of the loading size on displacements of stiffened plates with open ribs using the orthotropic rigidity ratio as the parameter. To analyze the displacement behavior of stiffened plates according to the loading size, a concentrated load and three types of uniform distributed loads were applied on the rib at the center of some plates. The results of the analysis of various stiffened plates show that the central displacement ratio of the distributed load to the concentrated load increased according to the decrease in the loading size, and that the ratio can be expressed as a function of the rigidity ratio for each rib space. The maximum displacement of the stiffened plate subjected to the distributed load did not appear at the center of the plate due to the local behavior, and the increasing ratio of the maximum displacement to the central displacement can be expressed as a function of the rigidity ratio for each rib space. Orthotropic plate analysis can achieve more accurate results using the proposed functions, and the application of the functions to examples of a different aspect ratio and support condition shows good accuracy. Therefore, using the functions proposed in this study, the central and maximum displacements can easily be achieved in the orthotropic plate analysis of stiffened plates subjected to the distributed load.

Enhanced heat transfer in the convergent rectangular channels with ∧/∨-shaped ribs on one wall (한 면에 ∧/∨형 리브가 있는 2벽면 수축 사각채널의 열전달 증가)

  • Lee, Myung-Sung;Yu, Ji-Ui;Jeong, Hee-Jae;Choi, Dong-Geun;Ha, Dong-Jun;Go, Jin-Su;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.270-274
    • /
    • 2016
  • The effect of the rib angle-of-attack on heat transfer in the convergent channel with ${\vee}/{\wedge}$-shaped ribs was examined experimentally. Four differently angled ribs (a = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) were placed to only the one sided wall. The ribbed wall was manufactured with a fixed rib height (e) of 10 mm and rib spacing (p)-to-height (e) ratio of 10. The convergent channel had a length of 1,000 mm and a cross-sectional areas of $100mm{\times}100mm$ at inlet and $50mm{\times}100mm$ at exit. The measurement was conducted for the Reynolds numbers ranging from 22,000 to 75,000. The results show that the Nusselt number is generally higher at higher Reynolds number and that an angle-of-attack of $45^{\circ}$ at the ${\wedge}$-shaped rib produces the greatest Nusselt number.

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.

Structural Performance of Permanent Steel Formed Wide Beams in Construction Stage (강재 영구거푸집 와이드 보의 시공단계 구조성능)

  • Yu Na Park;Inwook Heo;Jae Hyun Kim;Khaliunaa Darkhanbat;Sung-Bae Kim;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.130-138
    • /
    • 2023
  • In this study, experimental and analytical studies were conducted on the structural performance of permanent steel formed wide beams in construction stage. Four specimens were fabricated with different rib spacings of the side steel formwork and fixing plate depths, and experimental tests were performed to investigate the effects of variables on the structural performance. Also, an finite element analysis model of the steel permanent formwork wide beam was proposed based on the test results. Using the proposed model, parametric studies were performed with variables including rib spacing of the bottom and side steel formwork, spacing, depth, and thickness of the fixing plate to derive optimized details. Furthermore, an artificial neural network model was developed to easily estimate the deformation of the steel permanent formwork wide beam with various details.

Analytical Studies on the Steel Plate-Concrete Structures under Compressive Load (압축력을 받는 강판-콘크리트 구조의 해석적 고찰)

  • Choi, Byong Jeong;Han, Hong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • The primary object of the paper is to understand the compressive buckling characteristics of steel-concrete structures through the finite element analysis. The buckling pattern, compressive strength and stiffness of the steel plate concrete structures were investigated by the FEM analysis using the variations of B/t ratios and stud pitches. The investigation was focused on steel plate concrete structures with and without ribs placed on the surface of steel plates. The results of the FEM analysis were compared with the previous results from the theoretical equations. Conclusively, the buckling of the steel plate concrete structures occurred in the transverse direction of the loading direction. The stiffness of the steel plate concrete structure with ribs is greater than the one without the stiffened rib. The compressive strength in the FEM analysis is similar to that of JEAG 4681 and it showed 20% greater value than that of the proposed equations.

Selective Phase Control Method of Parallel DC-DC Converter to Reduce the Ripple Current (병렬 DC-DC 컨버터의 전류 맥동 저감을 위한 선택적 위상 제어 방법)

  • Baek, Seung-Woo;Kim, Hag-Wone;Chae, Su-yong
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.26-27
    • /
    • 2017
  • 본 논문은 병렬로 운전되는 컨버터의 출력 전류 맥동을 감소시키기 위한 선택적 위상 지연 구동 방법을 제안한다. 병렬로 운전되는 컨버터는 부하의 크기 및 운전하는 컨버터의 개수에 따라 그 효율이 달라지므로, 기동되는 컨버터의 개수를 가변하여 운전하는 것이 효율적이다. 또한 전류의 맥동을 저감하기 위해서 일정한 위상 차이를 가지도록 제어하는 인터리브드 운전 기법이 널리 사용되고 있다. 따라서 병렬 운전되는 컨버터의 출력전류 맥동을 저감시키기 위해, 운전되는 컨버터의 개수에 따라 위상 간격을 조정해야 할 필요성이 있다. 본 논문에서는 구동되는 컨버터의 개수에 따라 위상 간격을 제어하여 출력전류의 맥동을 저감하는 기법을 제안한며, 실험을 통해 제안된 알고리즘을 검증한다.

  • PDF