• Title/Summary/Keyword: 롤전복

Search Result 11, Processing Time 0.037 seconds

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles (무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • For the high center of gravity vehicles the roll stiffness of their suspensions is arranged to be very high because such vehicles are in some danger of tipping over in cornering. In some cases, the effective roll stiffness is determined significantly by the compliance of the tires because of the very stiff anti-roll members incorporated in the suspension. In such cases, it is clear that the shock absorbers which may be effective in damping heave oscillations have little effect on roll oscillations. Therefore, wind gusts and roadway unevenness may cause large swaying oscillations. In this paper, to improve the stability for the high center of gravity vehicles a control scheme to augment the damping of the roll mode is proposed. As the feedback signals needed to provide damping of the roll motion, the front or rear steer angles or both are chosen because they are very related to roll motion. The scheme is effective from moderate to high speeds and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. The validity on the proposed method is verified through the computer simulation.

  • PDF

Design of a Robust Estimator for Vehicle Roll State for Prevention of Vehicle Rollover (차량 전복 방지를 위한 강건한 롤 상태 추정기 설계)

  • Park, Jee-In;Yi, Kyoung-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1103-1108
    • /
    • 2007
  • This paper describes a robust model-based roll state estimator for application to the detection of impending vehicle rollover. The roll state estimator is based on a 2-D bicycle model and a roll model to estimate the maneuver-induced vehicle roll motion. The measurement signals are lateral acceleration, yaw rate, steering angle, and vehicle speed. Vehicle mass is adapted to obtain robust performance of the estimator. Computer simulation is conducted to evaluate the proposed roll state estimator by using a validated vehicle simulator. It is shown that the roll state estimator shows robust performance without exact vehicle mass information.

  • PDF

A Study on Roll Characteristics of Railway Vehicle (철도차량 롤 특성에 대한 고찰)

  • 김필환
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.512-521
    • /
    • 1998
  • The roll characteristic of railway vehicle is an important factor that affects the roll-over of vehicle and lateral ride comfort of passenger. Generally the roll characteristics of railway vehicle is defined by the term of roll-coefficient, s, which represents the ratio of incline or carbody to that of rail-cant. The limit values of roll coefficient recommended in UIC Bre 0.4 for coach without pantograph and 0.15 for vehicle with pantograph. The roll coefficient can be calculated by VAMPIRE that is the well-known commercial software for analysis of dynamic behavior of railway vehicle. The value of roll coefficient is effected by height of gravity center of carbody, stiffness of primary and secondary suspension and etc. The calculated roll-coefficient for electric locomotive and passenger coach is 0.12 and 0.77 respectively, The additional equipment such as anti-roll bar is considered in order to decrease roll-coefficient of passenger coach. In relation to roll characteristics, the analysis for roll-over due to wind is a1so performed. The results show that roll-characteristics affect the roll-over of vehicle.

  • PDF

Design of Rollover Prevention Controller Using Game-Theoretic Approach (미분게임 이론을 이용한 차량 전복 방지 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1429-1436
    • /
    • 2013
  • This study presents an approach for designing a vehicle rollover prevention controller using differential game theory and multi-level programming. The rollover prevention problem can be modeled as a non-cooperative zero-sum two-player differential game. A controller as an equilibrium solution of the differential game guarantees the worst-case performance against every possible steering input. To obtain an equilibrium solution to the differential game with a small amount of computational effort, a multi-level programming approach with a relaxation procedure is used. To cope with the loss of maneuverability caused by the active suspension, an electronic stability program (ESP) is adopted. Through simulations, the proposed method is shown to be effective in obtaining an equilibrium solution of the differential game.

Comparison among Active Roll Controllers for Rollover Prevention and Ride Comfort Enhancement (승차감 향상과 차량 전복 방지를 위한 능동 롤 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.828-834
    • /
    • 2014
  • This paper presents a comparison among three types of approaches to an ARC (Active Roll Control) with an AARB(Active Anti-Roll Bar) for a vehicle system. Lateral acceleration and road profile are considered as disturbance. The ARC is designed with an LQ SOF (Linear Quadratic Static Output Feedback) control, $H_{\infty}$ control and SMC (Sliding Mode Control). These approaches are compared in terms of rollover prevention and ride comfort. For comparison, Bode plot analysis based on linear model and frequency response analysis based on CarSim simulation are performed.

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.