• Title/Summary/Keyword: 롤·피치

Search Result 70, Processing Time 0.021 seconds

제트 베인에 의한 추력 방향 제어 장치 3차원 유동해석

  • 황민기;윤덕진;전승배;김승우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.15-15
    • /
    • 2000
  • 제트 베인에 의한 추력 방향 제어 장치는 롤 운동 제어를 가능하게 하고, 큰 선회 각도를 얻을 수 있는 장점이 있으나, 기계 장치가 비교적 복잡하고, 제트 베인의 열적, 구조적 문제를 해결하여야 한다. 복잡한 기계 장치는 유동 해석의 측면에서 고려해 볼 때 격자 형성을 어렵게 만들어 유동장 해석을 통한 성능예측을 어렵게 만든다. 구조물의 응력해석을 위하여 제트 베인 표면에서의 정압력과 더불어 마찰력도 고려하여야 하는데, 정확한 마찰력 계산을 위해서는 난류 모델링이 필수적이고, 그에 따라 벽면 근처에서 격자를 밀접시키는 것이 요구된다. 본 연구에서는 상용 유동해석 소프트웨어인 Fluent를 사용하여 제트 베인이 장착된 추력 방향 제어 장치의 3차원 난류 유동장 계산을 수행하였다. 피치, 요 운동의 경우와 롤 운동의 경우로 구분하여 계산하였으며, 최대 받음각을 $25^{\cire}$ 로 하여 제트 베인의 받음각에 따라 회전축에 작용하는 힘과 모멘트를 계산하였다. 본 연구의 결과는 향후 개발될 제트 베인이 장착된 추력 방향 제어 장치의 개념설계 단계에 필요한 기본자료로서 신뢰도를 높이는데 도움이 되리라 판단된다.

  • PDF

Double-Pitch Dual Grating Method for Detecting the Axial Offset in Roll System (2 배수 피치비를 갖는 이중 격자 측정법을 이용한 축방향 롤 회전 오차 측정)

  • Kim, Geehong;Ten, Aleksey-Desen;Lim, Hyungjun;Lee, Jaejong;Choi, Keebong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1273-1279
    • /
    • 2013
  • We propose a dual grating alignment technique for roll-to-roll positioning which allows achieving nanometer scale alignment by using micro-size marks. The high precision alignment system were designed and manufactured. It was confirmed that the optical system was properly adjusted and fully aligned with the dual gratings. The experiment and computer simulation results were presented. Alignment accuracy below 50 nm was achieved.

The System of Converting Muscular Sense into both Color and Sound based on the Synesthetic Perception (공감각인지 기반 근감각신호에서 색·음으로의 변환 시스템)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.462-469
    • /
    • 2014
  • As a basic study on both engineering applications and representation methods of synesthesia, this paper aims at building basic system which converts a muscular sense into both visual and auditory elements. As for the building method, data of the muscular sense can be acquired through roll and pitch signals which are calculated from both three-axis acceleration sensor and the two-axis gyro sensor. The roll and pitch signals are then converted into both visual and auditory information as outputs. The roll signals are converted into both intensity elements of the HSI color model and octaves as one of auditory elements. In addition, the pitch signals are converted into both hue elements of the HSI color model and scales as another one of auditory elements. Each of the extracted elements of the HSI color model is converted into each of the three elements of the RGB color model respectively, so that the real-time output color signals can be obtained. Octaves and scales are also converted and synthesized into MIDI signals, so that the real-time sound signals can be obtained as anther one of output signals. In experiments, the results revealed that normal color and sound output signals were successfully obtained from roll and pitch values that represent muscular senses or physical movements, depending on the conversion relationship based on the similarity between color and sound.

A Study On Design & Implementation of An Attitude Control System of a Lot of Legs Robots (다족형 로봇의 자세 제어 시스템 설계 및 구현에 관한 연구)

  • Nam, Sang-Yep;Hong, Sung-Ho;Kim, Suk-Joong
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • This study is implementation of attitude control system(ACS - Attitude Control System). for a multi legs robot. This study designs H/W of Inertial Measurement Unit (IMU) and attitude control algorithm S/W. Compare performance with Mtx and MTx in order to verify action performance of this system after implementation, and will verify a system integrated IMU of a multi-legs robot. ACS uses Gyro and an accelerometer and an earth magnetism sensor, and it is a system controlling a roll, pitch angle attitude of an object. Generally, low price MEMS is difficult to calculate a correct situation of an object as an error occurs severely the Inertial sensor. This study implements IMU in order to develop ACS as use MEMS, accelerometer, Gyro sensor and earth magnetism sensor. Design algorithm each a roll, pitch, yaw attitude guaranteeing regular performance, and do poling in a system as include an attitude calculation program in an IMU system implemented. Mixed output of Gyro and an accelerometer, and recompensed a roll, pitch angle, and loaded in this study on a target platform in order to implement the ACS which guaranteed performance more than a continuously regular level, and operated by real time, and did porting, and verified.

An accelerometer aided mixing algorithm for strapdown attitude(roll, pitch) reference system (스트랩다운 비행자세(롤, 피치)측정장치의 가속도계 보조 혼합알고리즘)

  • 유재종;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.54-58
    • /
    • 1989
  • The purpose of this paper is to develop a more accurate attitude algorithm with low grade gyro output. The proposed algorithm estimates attitudes by combining accelerometer and gyro output. For performance improvement of the algorithm, a method of velocity compensation is proposed for a better attitude estimation which is calculated from the accelerometer output. Velocity compensation is done by using Kalman Filter to estimate another velocity component.

  • PDF

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

Development of Fuel Quantity Measurement System for Aircraft Supplementary Fuel Tank (항공기 보조연료탱크 연료량측정시스템 개발)

  • Yang, Junmo;Kim, Bonggyun;Hahn, Sunghyun;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.927-933
    • /
    • 2020
  • This paper presents a fuel quantity measurement system (FQMS) for an aircraft supplementary fuel tank considering the change of aircraft attitude. The developed FQMS consists of fuel sensors, a signal process unit, an indicator and a software to estimate the fuel quantity from the sensor data. To replicate the change of the roll and pitch attitude on the ground, the test simulator is developed in this work. Using the test simulator, the sensor data at various fuel quantities, roll and pitch angles are automatically measured to build a training data set. The data-driven software to estimate the fuel quantity is then developed using a trilinear interpolation method with the training data set. The developed FQMS is verified by investigating the fuel estimation error of the test data set that we know the true values. Through the test, it is confirmed that the error of the developed FQMS system satisfies the criteria of TSO-C55 document.

A Feedback-Form of Terminal-Phase Optimal Guidance Law for BTT Missiles Considering Autopilot Dynamics (자동조종장치 동역학을 고려한 궤환 형태의 BTT 미사일용 최적 종말 유도 법칙)

  • Yoo, Seong-Jae;Hong, Jin-Woo;Ha, In-Joong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • In contrast with STT missiles, the guidance law design for BTT missiles should be based on 3-dimensional pursuit kinematics, since the pitch and roll channels of BTT missiles are coupled dynamically. More generally than the prior works, the dynamics of pitch and roll channels, as well as 3-dimensional pursuit kinematics are considered in the design of our terminal-phase optimal guidance law for BTT missiles proposed in this paper. Thereby, the proposed optimal guidance law guarantees high capturability with small miss distance without significant performance degradation due to time-lag effect even in case of relatively slow autopilot dynamics. Moreover, the resulting optimal guidance law is expressed explicitly in feedback-form with the coefficients given as the functions of time-to-go. The effectiveness and practicality of our work is demonstrated through various simulation results.

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.