• Title/Summary/Keyword: 로켓엔진 시험

Search Result 435, Processing Time 0.022 seconds

Liquid Rocket Engine Development Participation State and Vision of Korean Air (대한항공의 액체로켓엔진 개발 참여현황과 비전)

  • Kim, Woo-Kyum;Kim, Seung-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.601-602
    • /
    • 2009
  • 대한항공은 2003년 소형위성발사체(KSLV-I) 사업 참여와 함께 2005년부터는 국내 액체로켓엔진 개발관련 한국항공우주연구원 주관의 각종 개발에 참여하고 있다. 본 논문에서는 현재 국내에서 진행중인 75톤급 액체로켓엔진 시스템 선행개발관련 대한항공이 수행하고 있는 분야별 업무의 소개와 함께 대한 항공의 향후 추진 계획을 다루고자 한다.

  • PDF

Transient Analysis of Liquid Rocket Engine around the Nominal Thrust Level (정상상태 부근에서의 액체로켓 엔진의 과도해석)

  • Choi Hwan-Seok;Seol Woo-Seok;Park Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.68-76
    • /
    • 2004
  • It is essential to develop a transient engine system analysis model for turbopump fed type liquid rocket engine development, especially for deriving engine system test number and conditions. In this study, we proposed a mathematical model of turbopump fed type liquid rocket engine, and inspected transient mode changes around the nominal thrust level of a rocket engine according to variations of trust control valve's opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the transient code showed the similar results within $2\%$ with AnaSyn.

  • PDF

A Case Study on Upper Stage Liquid Propellant Rocket Engine Developments (위성 발사체 상단 엔진 개발 사례 연구)

  • Nam, Chang-Ho;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.109-115
    • /
    • 2011
  • Development cases of space launch vehicle upper stage engine were studied. HM-7, Vinci, LE-5, RL10 engines are representative upper stage engines of Europe, Japan, and United States. It was realized that upper stage engines were developed with more than two engine test facilities and the development period was 5 to 8 years accompanied with 10~11 engines.

  • PDF

Modeling of the Liquid Rocket Engine Transients (액체로켓엔진 천이작동 예측을 위한 동특성 모델링)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • A program aiming at predicting dynamic characteristics of a Liquid Rocket Engine(LRE) was developed and examined to trace entire LRE operation. In the startup period, transient characteristics of the propellant flows were predicted and validated with hydraulic tests data. An arrangement of each component for the pipelines was based on an operating circuit of open cycle LRE. The flow rate ratio for the gas generator and the main chamber was determined to mimic that of real open cycle LRE. Individual component modeling at its transient was completed and was integrated into the system prediction program. Essential parameters of the component dynamic characteristics were examined in an integrated fashion.

Analysis of Liquid-Propellant Rocket Engine(KL-3) Unstable Combustion Characteristics of Vertical Installation (수직장착에서의 액체추진제 로켓엔진(KL-3) 불안정 연소특성에 관한 연구)

  • 하성업;권오성;이정호;김병훈;한상엽;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • To perform combined tests with propellant feeding system and engine, which were developed for KSR-III launcher, vertical test stand was organized and a series of hot-fire combustion tests were carried out with engines of several injector faceplate types. In hot-fire tests in vertical installation, combustion instabilities occurred right after ignition with an engine without baffle, and such combustion instabilities did not occur at ignition add during mainstage operation for an engine with STS or composite baffle. 1.regular and temporary pressure pulsations(popping) were detected during steady operation with a baffle engine, however a development to combustion instabilities with resonant mode was highly suppressed by baffle. With a series of tests, it was confirmed that the last developed engine, which has composite baffle, was operated successfully in KSR-III flight propulsion system.

Preliminary design on the thrust measurement system for vertical firing test stand of the liquid rocket engine combustion chamber (액체로켓엔진 연소기 수직형 연소시험설비의 추력측정시스템 기본설계)

  • Kim, Ji-Hoon;Kim, Seung-Han;Lee, Kwang-Jin;Han, Yeoung-Min;Park, Bong-Kyo;Hu, Sang-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.574-577
    • /
    • 2012
  • Thrust measuring is one of the crucial factor to decide the performance of a liquid rocket engine when the engine development test, especially for the combustion chamber, is implemented. Calculating the thrust from a combustion pressure is used when direct measuring the thrust is impossible, but direct measuring the thrust is necessary and various methods for doing it more precisely should be considered. This paper introduces the preliminary design concept about the new thrust measurement system for the vertical firing test stand, which is introduced domestically for the first time, of a liquid rocket engine combustion chamber.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Pressure Control of Staged Combustion Liquid Rocket Engine (다단연소사이클 액체 로켓엔진의 압력제어에 대한 연구)

  • Hwang, Changhwan;Lee, Kwangjin;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;Lee, Jungho;Yoo, Byungil;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.18-23
    • /
    • 2018
  • For the control of pre-burner combustion pressure, the open angle of the TTR (Throttle for Thrust Regulation) valve was varied from $143^{\circ}$ to $185^{\circ}$ while testing cold flow, ignition, and combustion. The major performance variables of rocket engines and hydraulic performance of the TTR valve regarding the open angle were verified. However, the controllability of pre-burner combustion pressure was not verified due to the limitations of the test. Comprehensive research will be done after addressing these problems.

Technology Demonstration Plan and Status of a 75-$Ton_f$ LRE Thrust Chamber (75톤급 액체로켓엔진 연소기 기술검증 계획 및 현황)

  • Choi, Hwan-Seok;Han, Young-Min;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.15-18
    • /
    • 2009
  • Technology demonstration for the development of a 75-tonf liquid rocket engine(LRE) thrust chamber for a space launch vehicle has been started on the basis of the previously acquired 30-tonf LRE technologies. For this purpose, a technology demonstration plan was established upon considering the currently available firing test facility in Korea and performance evaluation firing tests were performed on technology demonstration model thrust chambers under a restricted test condition. This paper describes the plan and current status of technology demonstration for a 75-tonf LRE thrust chamber.

  • PDF

A Fault Diagnosis of Damage on Inner Liner of Regeneratively-Cooled Combustion Chamber during Gas Generator Cycle Engine Hot Firing Test (가스발생기 사이클 엔진 연소시험 중 재생냉각형 연소기의 내피 손상진단)

  • Hwang, Dokeun;Kim, Hyeon-Jun;Kim, Jong-gyu;Kim, Munki;Lim, Byoungjik;Kang, Donghyuk;Joo, Seongmin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1165-1168
    • /
    • 2017
  • This paper suggests a fault diagnosis of damage on inner liner of regeneratively-cooled combustion chamber during gas generator cycle rocket engine hot firing test. This method focuses on a phenomenon that fuel flow rate difference between two flow estimate methods changes under an inner liner damage of combustion chamber causing fuel leakage and it is expected that it contributes to detect a damage on the combustion chamber in early stage and prevent further destruction during the hot firing test.

  • PDF