• Title/Summary/Keyword: 로컬 바이너리 패턴

Search Result 2, Processing Time 0.014 seconds

Implementation for Hardware IP of Real-time Face Detection System (실시간 얼굴 검출 시스템의 하드웨어 IP 구현)

  • Jang, Jun-Young;Yook, Ji-Hong;Jo, Ho-Sang;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2365-2373
    • /
    • 2011
  • This paper propose the hardware IP of real-time face detection system for mobile devices and digital cameras required for high speed, smaller size and lower power. The proposed face detection system is robust against illumination changes, face size, and various face angles as the main cause of the face detection performance. Input image is transformed to LBP(Local Binary Pattern) image to obtain face characteristics robust against illumination changes, and detected the face using face feature data that was adopted to learn and generate in the various face angles using the Adaboost algorithm. The proposed face detection system can be detected maximum 36 faces at the input image size of QVGA($320{\times}240$), and designed by Verilog-HDL. Also, it was verified hardware implementation by using Virtex5 XC5VLX330 FPGA board and HD CMOS image sensor(CIS) for FPGA verification.

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.