• Title/Summary/Keyword: 로지스틱회귀

Search Result 1,734, Processing Time 0.032 seconds

로지스틱 회귀모형을 분석하기 위한 SPSS, SAS, STATA의 비교분석

  • Kim, Sun-Gwi;Jeong, Dong-Bin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-292
    • /
    • 2002
  • 최근 여러 분야에서 로지스틱 회귀에 대한 필요성과 그 응용이 급증하면서 이를 분석하기 위한 통계패키지가 많이 개발되어 사용되고 있다. 이 논문에서는 자료의 유형에 따라 활용할 수 있는 여러 형태의 로지스틱 회귀모형을 간단히 살펴보고, SPSS, SAS, STATA, MINITAB과 같은 통계패키지를 사용하여 로지스틱 회귀모형에 적용할 때 각각 다룰 수 있는 범위와 그 특징에 대해 다룬다.

  • PDF

Fine-Grain Weighted Logistic Regression Model (가중치 세분화 기반의 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.77-81
    • /
    • 2016
  • Logistic regression (LR) has been widely used for predicting the relationships among variables in various fields. We propose a new logistic regression model with a fine-grained weighting method, called value weighted logistic regression, by assigning different weights to each feature value. A gradient approach is utilized to obtain the optimal weights of feature values. We conduct experiments on several data sets and the experimental results show that the proposed method shows meaningful improvement in prediction accuracy.

Model assessment with residual plot in logistic regression (로지스틱회귀에서 잔차산점도를 이용한 모형평가)

  • Kahng, Myung Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.141-150
    • /
    • 2015
  • Graphical paradigms for assessing the adequacy of models in logistic regression are discussed. The residual plot has been widely used as a graphical tool for evaluating the adequacy of the model. However, this approach works well only for linear models with constant variance, and the alternative approach, the marginal model plot, has its defects as well. We suggest a Chi-residual plot that overcomes the potential shortcomings of the marginal model plot.

마코프 로지스틱 회귀모형을 이용한 강수 확률예측

  • Park, Jeong-Su
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.345-352
    • /
    • 2006
  • 현 기상의 시점에서 강수 확률 예측을 위해 가장 적절한 모형은 공간적 종속성과 시간적 종속성을 고려한 모형이 선택되어져야 한다. 보통 마크프 연쇄 모형과 예보인자를 이용하는 회귀 모형이 모두 고려된 모형을 사용한다. 본 논문에서는 강수 형태를 세 개의 상태로 나눈 경우, 즉 맑은 경우, 흐린 경우, 비온 경우로 나누어 마코프 로지스틱 회귀모형을 세우고 강수확률을 예측 할 수 있도록 하였다. 또한 서울 지역의 강수 자료를 이용하여 기존의 마코프 회귀모형과 마코프 로지스틱 회귀모형을 서로 비교하여 실제적 적용 문제를 다루었다.

  • PDF

Value Weighted Regularized Logistic Regression Model (속성값 기반의 정규화된 로지스틱 회귀분석 모델)

  • Lee, Chang-Hwan;Jung, Mina
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1270-1274
    • /
    • 2016
  • Logistic regression is widely used for predicting and estimating the relationship among variables. We propose a new logistic regression model, the value weighted logistic regression, which comprises of a fine-grained weighting method, and assigns adapted weights to each feature value. This gradient approach obtains the optimal weights of feature values. Experiments were conducted on several data sets from the UCI machine learning repository, and the results revealed that the proposed method achieves meaningful improvement in the prediction accuracy.

Logistic regression analysis for Critical Rainfall Estimation (한계강우량 산정을 위한 로지스틱 회귀분석)

  • Lee, Changhyun;Lee, Kangwon;Keum, Hojun;Kim, Byunghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.232-232
    • /
    • 2022
  • 1차원 관망해석모형과 2차원 지표면범람 해석모형을 이용한 도시지역의 실시간 홍수예·경보시스템 구축은 모형의 모의에 많은 시간이 소요되므로 한계가 있다. 또한, 연구유역에서 시나리오 강우에 대해 침수를 유발시키는 한계강우량을 1-2차원 모형의 시행착오법을 적용한 반복적인 수행을 통해 산정하는 것은 비효율적인 방법이다. 따라서, 본 연구에서는 이에 대한 해결책으로 로지스틱 회귀를 이용하여 배수분구별 침수 발생기준 강우량을 산정하고자 한다. 침수 발생 한계강우량 산정을 배수분구 단위로 제시하기 위하여 로지스틱 회귀분석을 이용하였다. 풍수해저감종합계획(2015)과 침수흔적도를 이용하여 배수분구 별 침수이력에 대한 데이터베이스를 구축하고, 이를 1-2차원 수리해석을 통한 침수심과 함께 로지스틱 회귀모형에 학습하였다. 지속시간 1시간, 10mm 강우부터 500년 빈도의 Huff 3분위 시나리오 17개를 사용하여 확률강우량을 산정하였고, 이를 1-2차원 수리해석을 위한 입력자료로 사용하였다. EPA-SWMM을 통한 1차원 도시유출해석과 FLO-2D를 통한 2차원 침수해석에서 20cm 이상의 침수심이 발생하거나 지상관측자료, 침수흔적도 및 풍수해저감종합계획에서 실제 침수가 발생했을 경우를 1, 그렇지 않은 경우를 0으로 하여 데이터베이스를 구축하여 로지스틱 회귀모형에 학습시켜 침수 발생 한계강우량을 산정하였다. 로지스틱 회귀분석을 통해 서울시 지역의 배수분구별 한계강우량을 산정할 수 있으며, 지속적으로 관측되는 강우 및 침수 발생 유무 자료를 추가함으로써 산정된 침수 한계강우량을 상회하는 강우 사상이 나타났을 시에 침수 발생 유무를 확인하여 본 연구에서 제안한 방법에 대해 검증이 가능할 것으로 보인다.

  • PDF

Variable Selection for Logistic Regression Model Using Adjusted Coefficients of Determination (수정 결정계수를 사용한 로지스틱 회귀모형에서의 변수선택법)

  • Hong C. S.;Ham J. H.;Kim H. I.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.435-443
    • /
    • 2005
  • Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.

Log-density Ratio with Two Predictors in a Logistic Regression Model (로지스틱 회귀모형에서 이변량 정규분포에 근거한 로그-밀도비)

  • Kahng, Myung Wook;Yoon, Jae Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2013
  • We present methods for studying the log-density ratio that enables the selection of the predictors and the form to be included in the logistic regression model. Under bivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of two predictors. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms. We also explore other conditions in which the crossproduct and quadratic terms are not needed in the logistic regression model.

Algorithm for the Robust Estimation in Logistic Regression (로지스틱회귀모형의 로버스트 추정을 위한 알고리즘)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Choi, Mi-Ae
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.551-559
    • /
    • 2007
  • The maximum likelihood estimation is not robust against outliers in the logistic regression. Thus we propose an algorithm for the robust estimation, which identifies the bad leverage points and vertical outliers by the V-mask type criterion, and then strives to dampen the effect of outliers. Our main finding is that, by an appropriate selection of weights and factors, we could obtain the logistic estimates with high breakdown point. The proposed algorithm is evaluated by means of the correct classification rate on the basis of real-life and artificial data sets. The results indicate that the proposed algorithm is superior to the maximum likelihood estimation in terms of the classification.

Steal Success Model for 2007 Korean Professional Baseball Games (2007년 한국프로야구에서 도루성공모형)

  • Hong, Chong-Sun;Choi, Jeong-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.455-468
    • /
    • 2008
  • Based on the huge baseball game records, the steal plays an important role to affect the result of games. For the research about success or failure of the steal in baseball games, logistic regression models are developed based on 2007 Korean professional baseball games. The analyses of logistic regression models are compared of those of the discriminant models. It is found that the performance of the logistic regression analysis is more efficient than that of the discriminant analysis. Also, we consider an alternative logistic regression model based on categorical data which are transformed from uneasy obtainable continuous data.