• Title/Summary/Keyword: 로지스틱모형

Search Result 541, Processing Time 0.022 seconds

로지스틱 회귀모형을 분석하기 위한 SPSS, SAS, STATA의 비교분석

  • Kim, Sun-Gwi;Jeong, Dong-Bin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.287-292
    • /
    • 2002
  • 최근 여러 분야에서 로지스틱 회귀에 대한 필요성과 그 응용이 급증하면서 이를 분석하기 위한 통계패키지가 많이 개발되어 사용되고 있다. 이 논문에서는 자료의 유형에 따라 활용할 수 있는 여러 형태의 로지스틱 회귀모형을 간단히 살펴보고, SPSS, SAS, STATA, MINITAB과 같은 통계패키지를 사용하여 로지스틱 회귀모형에 적용할 때 각각 다룰 수 있는 범위와 그 특징에 대해 다룬다.

  • PDF

Graphical regression and model assessment in logistic model (로지스틱모형에서 그래픽을 이용한 회귀와 모형평가)

  • Kahng, Myung-Wook;Kim, Bu-Yong;Hong, Ju-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • Graphical regression is a paradigm for obtaining regression information using plots without model assumptions. The general goal of this approach is to find lowdimensional sufficient summary plots without loss of important information. Model assessments using residual plots are less likely to be successful in models that are not linear. As an alternative approach, marginal model plots provide a general graphical method for assessing the model. We apply the methods of graphical regression and model assessment using marginal model plots to the logistic regression model.

마코프 로지스틱 회귀모형을 이용한 강수 확률예측

  • Park, Jeong-Su
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.345-352
    • /
    • 2006
  • 현 기상의 시점에서 강수 확률 예측을 위해 가장 적절한 모형은 공간적 종속성과 시간적 종속성을 고려한 모형이 선택되어져야 한다. 보통 마크프 연쇄 모형과 예보인자를 이용하는 회귀 모형이 모두 고려된 모형을 사용한다. 본 논문에서는 강수 형태를 세 개의 상태로 나눈 경우, 즉 맑은 경우, 흐린 경우, 비온 경우로 나누어 마코프 로지스틱 회귀모형을 세우고 강수확률을 예측 할 수 있도록 하였다. 또한 서울 지역의 강수 자료를 이용하여 기존의 마코프 회귀모형과 마코프 로지스틱 회귀모형을 서로 비교하여 실제적 적용 문제를 다루었다.

  • PDF

The Comparative Study for Truncated Software Reliability Growth Model based on Log-Logistic Distribution (로그-로지스틱 분포에 근거한 소프트웨어 고장 시간 절단 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Due to the large-scale application software syslmls, software reliability, software development has animportantrole. In this paper, software truncated software reliability growth model was proposed based on log-logistic distribution. According to fixed time, the intensity function, the mean value function, the reliability was estimated and the parameter estimation used to maximum likelihood. In the empirical analysis, Poisson execution time model of the existiog model in this area and the log-logistic model were compared Because log-logistic model is more efficient in tems of reliability, in this area, the log-logistic model as an alternative 1D the existiog model also were able to confim that you can use.

Steal Success Model for 2007 Korean Professional Baseball Games (2007년 한국프로야구에서 도루성공모형)

  • Hong, Chong-Sun;Choi, Jeong-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.455-468
    • /
    • 2008
  • Based on the huge baseball game records, the steal plays an important role to affect the result of games. For the research about success or failure of the steal in baseball games, logistic regression models are developed based on 2007 Korean professional baseball games. The analyses of logistic regression models are compared of those of the discriminant models. It is found that the performance of the logistic regression analysis is more efficient than that of the discriminant analysis. Also, we consider an alternative logistic regression model based on categorical data which are transformed from uneasy obtainable continuous data.

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

Logistic regression analysis for Critical Rainfall Estimation (한계강우량 산정을 위한 로지스틱 회귀분석)

  • Lee, Changhyun;Lee, Kangwon;Keum, Hojun;Kim, Byunghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.232-232
    • /
    • 2022
  • 1차원 관망해석모형과 2차원 지표면범람 해석모형을 이용한 도시지역의 실시간 홍수예·경보시스템 구축은 모형의 모의에 많은 시간이 소요되므로 한계가 있다. 또한, 연구유역에서 시나리오 강우에 대해 침수를 유발시키는 한계강우량을 1-2차원 모형의 시행착오법을 적용한 반복적인 수행을 통해 산정하는 것은 비효율적인 방법이다. 따라서, 본 연구에서는 이에 대한 해결책으로 로지스틱 회귀를 이용하여 배수분구별 침수 발생기준 강우량을 산정하고자 한다. 침수 발생 한계강우량 산정을 배수분구 단위로 제시하기 위하여 로지스틱 회귀분석을 이용하였다. 풍수해저감종합계획(2015)과 침수흔적도를 이용하여 배수분구 별 침수이력에 대한 데이터베이스를 구축하고, 이를 1-2차원 수리해석을 통한 침수심과 함께 로지스틱 회귀모형에 학습하였다. 지속시간 1시간, 10mm 강우부터 500년 빈도의 Huff 3분위 시나리오 17개를 사용하여 확률강우량을 산정하였고, 이를 1-2차원 수리해석을 위한 입력자료로 사용하였다. EPA-SWMM을 통한 1차원 도시유출해석과 FLO-2D를 통한 2차원 침수해석에서 20cm 이상의 침수심이 발생하거나 지상관측자료, 침수흔적도 및 풍수해저감종합계획에서 실제 침수가 발생했을 경우를 1, 그렇지 않은 경우를 0으로 하여 데이터베이스를 구축하여 로지스틱 회귀모형에 학습시켜 침수 발생 한계강우량을 산정하였다. 로지스틱 회귀분석을 통해 서울시 지역의 배수분구별 한계강우량을 산정할 수 있으며, 지속적으로 관측되는 강우 및 침수 발생 유무 자료를 추가함으로써 산정된 침수 한계강우량을 상회하는 강우 사상이 나타났을 시에 침수 발생 유무를 확인하여 본 연구에서 제안한 방법에 대해 검증이 가능할 것으로 보인다.

  • PDF

Variable Selection for Logistic Regression Model Using Adjusted Coefficients of Determination (수정 결정계수를 사용한 로지스틱 회귀모형에서의 변수선택법)

  • Hong C. S.;Ham J. H.;Kim H. I.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.435-443
    • /
    • 2005
  • Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.

Penalized logistic regression models for determining the discharge of dyspnea patients (호흡곤란 환자 퇴원 결정을 위한 벌점 로지스틱 회귀모형)

  • Park, Cheolyong;Kye, Myo Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.125-133
    • /
    • 2013
  • In this paper, penalized binary logistic regression models are employed as statistical models for determining the discharge of 668 patients with a chief complaint of dyspnea based on 11 blood tests results. Specifically, the ridge model based on $L^2$ penalty and the Lasso model based on $L^1$ penalty are considered in this paper. In the comparison of prediction accuracy, our models are compared with the logistic regression models with all 11 explanatory variables and the selected variables by variable selection method. The results show that the prediction accuracy of the ridge logistic regression model is the best among 4 models based on 10-fold cross-validation.

Development of Forecasting Model for the Initial Sale of Apartment Using Data Mining: The Case of Unsold Apartment Complex in Wirye New Town (데이터 마이닝을 이용한 아파트 초기계약 예측모형 개발: 위례 신도시 미분양 아파트 단지를 사례로)

  • Kim, Ji Young;Lee, Sang-Kyeong
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.217-229
    • /
    • 2018
  • This paper aims at applying the data mining such as decision tree, neural network, and logistic regression to an unsold apartment complex in Wirye new town and developing the model forecasting the result of initial sale contract by house unit. Raw data are divided into training data and test data. The order of predictability in training data is neural network, decision tree, and logistic regression. On the contrary, the results of test data show that logistic regression is the best model. This means that logistic regression has more data adaptability than neural network which is developed as the model optimized for training data. Determinants of initial sale are the location of floor, direction, the location of unit, the proximity of electricity and generator room, subscriber's residential region and the type of subscription. This suggests that using two models together is more effective in exploring determinants of initial sales. This paper contributes to the development of convergence field by expanding the scope of data mining.