• Title/Summary/Keyword: 로봇 보조

Search Result 249, Processing Time 0.025 seconds

Research on the Development of Automated Multifunction-Integrated Motion Bed (자동화된 다기능 통합 전동 침대 개발에 대한 연구)

  • Lee, Youngdae;Choi, Moonsoo;Jang, Ilhwan;Kim, Chang-Young;Choi, Dong-Soo;Kim, Minsung;Kim, Wonjoon;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.215-222
    • /
    • 2018
  • Recently, various motion beds have been actively developed and popularized. The motion bed has the functions of height adjustment, back plate rising, knee lifting, tilt function and left / right rotation, and the remote control can conveniently be used by the patient himself or the caregiver to move the patient. However, since the medical bed for use does not have a function of preventing pressure ulcers, exchanging sheets, and transferring patients, it is necessary to disperse body pressure by using a pressure ulcer prevention matrix to prevent pressure ulcers. However, it is accompanied by muscle strength and hard work, and nurses are avoiding difficult nursing care. In this study, we developed the first prototype in the world and confirmed that the system works normally with the goal of developing multifunctional beds that automatically perform the prevention of bed sores, the exchange of sheets and the transfer of patients in order to facilitate such nursing work. It is anticipated that the proposed multifunctional motorized bed in the future will be a model of a medical robot for smart healthcare.

The Analysis of Research Trend about Utilization of Electronic Media in Early Childhood Education -based on Smart Device- (유아전자매체 활용에 관한 연구동향 분석 -스마트기기를 중심으로-)

  • Hwang, Ji-Ae;Kim, Sung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.470-477
    • /
    • 2016
  • This study analyzed the research trends concerning the use of smart devices by young children, such as smart phones, tablet PCs, interactive whiteboards and teacher assistant robots, which has begun to be mentioned relatively recently, and attempted to analyze the characteristics of the research trends and provide guidelines for the direction of future research. A search of articles related to the use of electronic media by young children using an Online Search DB revealed a total of 192 research papers, which were analyzed according to the subject of research, teaching-learning method, area of development and area of activity. It was found that the teaching-learning method, teacher education and professionalism were highly prevalent in the subject of research; the education method integrating play activity with literature activity were highly prevalent in the teaching-learning method; language development and social development were highly prevalent in the area of development; and language activity and social activity were highly prevalent in the area of activity.

Design of Indoor Electric Moving and Lifting Wheelchair with Minimum Rotation Radius and Obstacle Overcoming (최소 회전반경 및 장애물 극복형 실내 전동 이·승강 휠체어의 설계)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.415-424
    • /
    • 2019
  • In this paper, a minimum rotation radius was designed and fabricated to overcome the threshold so that elderly or disabled people who have difficulty moving can move and transfer safely and conveniently in a narrow room. In the indoor environment, where the sedentary culture develops, this study aimed to provide convenience for passengers with fracture diseases, geriatric diseases, and other knee and waist diseases. First, links, seats, armrests, covers, motors, batteries, chargers, controllers, etc. were attached to the frame so that they could be moved and lifted indoors. The product design and structure were designed considering the user's environment and physical characteristics, and IoT functions were added. A driving experiment was performed to confirm the operating performance of the manufactured indoor moving and lifting wheelchair. The performance tests, such as continuous running time, turning radius, maximum actuator load, maximum lift height, sound pressure level, minimum sensing distance of the driving aid sensor, interworking of server and app programs, device compatibility, and duty cycle error rate, were performed. As a result of the test, the built-in wheelchair could achieve the performance test target of each item and operate successfully.

Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet (SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.

Improvement of Silkworm Egg Microinjection Using 3D Printing Technology (3D 프린팅 기술을 이용한 누에 알 미세주입 기술 개선)

  • Jeong, Chan Young;Lee, Chang Hoon;Seok, Young-Seek;Yong, Sang Yeop;Kim, Seong-Wan;Kim, Kee Young;Park, Jong Woo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.249-254
    • /
    • 2022
  • Silkworms, which have for long been used as an insect resource for industrialization, have recently attracted attention as potential bio-factories for the production of novel biomaterials. In this regard, material production is typically achieved based on transformation technology, mediated via microinjection, in which a target gene is inserted into eggs containing an embryo. However, an essential step in the microinjection procedure is egg fixation, which can be a time-consuming and laborious task. Therefore, in this study, using the 3DCADian program, we adopted a 3D printing approach to model egg liners and glue drawers, which can contribute to facilitating egg alignment and fixation, thereby enhancing transformation efficiency by reducing time consumption and fatigue. After rendering using Fusion 360, the two supplementary tools were produced by printing with nylon resin (PA12) and Sinterit Lisa Pro. Subsequent analysis of the time required to fix eggs on glass slides using the two manufactured tools, revealed that the processing time was reduced by approximately 18.6% when the two tools were used compared with when these tools were not used. These innovations not only reduced fatigue but also contributed to more effective use of the microscope and manipulator for microinjection. Consequently, we believe that with additional research and refinement, the egg liner and glue drawer developed in this study could be used to enhance silkworm transformation efficiency and study similar transformation systems in other industrial insects.

Analysis of Occupational Therapy Intervention Studies for Improvement of Neglect: Single Subject Study (편측무시 개선을 위한 작업치료 중재 연구 분석: 국내 단일대상연구 중심으로)

  • Kim, Jin-Yeong;Youn, Sae-Woong;Choi, Yoo-Im
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.2
    • /
    • pp.9-23
    • /
    • 2023
  • Objective : Among the studies using neglect interventions in the field of occupational therapy, this study was conducted to confirm the contents and characteristics of literature applying single-subject studies, and to analyze the intervention effect and quality level. Methods : This study is a systematic review, and the single subject study published in academic journals for the last 10 years. Results : As a result of the thesis analysis, it was conducted on stroke, and the removal design with seven studies, and two studies were multiple baseline designs. As a result of analyzing the size of the intervention effect applied to neglect, 'highly effective' was found seven times, 'fairly effective' 18 times, 'questionable effective' five times, and 'unreliable effective' six times. As a result of the quality level, there were no studies with low level, with six high level and three medium level. Conclusion : As a result of the study, various methods were applied to neglect interventions. It is thought that this study will provide basic data for evidence-based interventions.

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

Development of Five Finger type Myoelectric Hand Prosthesis for State Transition-Based Multi-Hand Gestures change (다중 손동작 변환을 위한 상태 전이 기반 5손가락 근전전동의수 개발)

  • Seung-Gi Kim;Sung-Yoon Jung;Beom-ki Hong;Hyun-Jun Shin;Kyoung-Ho Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.67-76
    • /
    • 2024
  • Various types of assistive devices have been developed for upper limb amputees over the years, with myoelectric prosthesis particularly aimed at improving user convenience by enabling a range of hand gestures beyond simple grasping, tailored to the size and shape of objects. In this study, we developed a five-finger myoelectric prosthesis mimicking human hand size and finger movements, utilizing motor and worm gear mechanisms for stable and independent operation. Based on this, we designed a control system for independent finger control through electromyographic signal input, proposed a state transition-based hand gesture conversion algorithm by selecting representative eight hand gestures and defining conversion condition parameters. We introduced training and usability evaluation methods, and conducted usability assessments among upper limb amputees using dedicated tools, confirming the potential for commercial application of the algorithm and observing adaptive capabilities and high performance through iterative evaluations.

Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT (체부 정위방사선치료 시 호흡운동 감소를 위한 복부 압박기구 개발 및 유용성 평가)

  • Hwang, Seon-Bung;Kim, Il-Hwan;Kim, Woong;Im, Hyeong-Seo;Gang, Jin-Mook;Jeong, Seong-Min;Kim, Gi-Hwan;Lee, Ah-Ram;Cho, Yu-Ra
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. Materials and Methods: We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. Results: A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. Conclusion: In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration can be coped with when CTV-PTV margins of mean 6 mm would be used. And we conclude that the respiratory motion reduction compression belt we developed can be used for clinical effective aids along with the gating system.

  • PDF