• Title/Summary/Keyword: 로봇 개발 환경

Search Result 493, Processing Time 0.03 seconds

Model-based Specification of Non-functional Requirements in the Environment of Real-time Collaboration Among Multiple Cyber Physical Systems (사이버 물리 시스템의 실시간 협업 환경에서 소프트웨어 비기능 요구사항의 모델 기반 명세)

  • Nam, Seungwoo;Hong, Jang-Eui
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • Due to the advent of the 4th Industrial Revolution, it is imperative that we aggressively continue to develop state-of-the-art, cutting edge ICT technology relative to autonomous vehicles, intelligent robots, and so forth. Especially, systems based on convergence IT are being developed in the form of CPSs (Cyber Physical Systems) that interwork with sensors and actuators. Since conventional CPS specification only expresses behavior of one system, specification for collaboration and diversity of CPS systems with characteristics of hyper-connectivity and hyper-convergence in the 4th Industrial Revolution has been insufficiently presented. Additionally, behavioral modeling of CPSs that considers more collaborative characteristics has been unachieved in real-time application domains. This study defines the non-functional requirements that should be identified in developing embedded software for real-time constrained collaborating CPSs. These requirements are derived from ISO 25010 standard and formally specified based on state-based timed process. Defined non-functional requirements may be reused to develop the requirements for new embedded software for CPS, that may lead to quality improvement of CPS.

Gendered innovation for algorithm through case studies (음성·영상 신호 처리 알고리즘 사례를 통해 본 젠더혁신의 필요성)

  • Lee, JiYeoun;Lee, Heisook
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.459-466
    • /
    • 2018
  • Gendered innovations is a term used by policy makers and academics to refer the process of creating better research and development (R&D) for both men and women. In this paper, we analyze the literatures in image and speech signal processing that can be used in ICT, examine the importance of gendered innovations through case study. Therefore the latest domestic and foreign literature related to image and speech signal processing based on gender research is searched and a total of 9 papers are selected. In terms of gender analysis, research subjects, research environment, and research design are examined separately. Especially, through the case analysis of algorithms of the elderly voice signal processing, machine learning, machine translation technology, and facial gender recognition technology, we found that there is gender bias in existing algorithms, and which leads to gender analysis is required. We also propose a gendered innovations method integrating sex and gender analysis in algorithm development. Gendered innovations in ICT can contribute to the creation of new markets by developing products and services that reflect the needs of both men and women.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

An SoC-based Context-Aware System Architecture (SoC 기반 상황인식 시스템 구조)

  • Sohn, Bong-Ki;Lee, Keon-Myong;Kim, Jong-Tae;Lee, Seung-Wook;Lee, Ji-Hyong;Jeon, Jae-Wook;Cho, Jun-Dong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.512-516
    • /
    • 2004
  • Context-aware computing has been attracting the attention as an approach to alleviating the inconvenience in human-computer interaction. This paper proposes a context-aware system architecture to be implemented on an SoC(System-on-a-Chip). The proposed architecture supports sensor abstraction, notification mechanism for context changes, modular development, easy service composition using if-then rules, and flexible context-aware service implementation. It consists of the communication unit, the processing unit, the blackboard, and the rule-based system unit, where the first three components reside in the microprocessor part of the SoC and the rule-based system unit is implemented in hardware. For the proposed architecture, an SoC system has been designed and tested in an SoC development platform called SystemC and the feasibility of the behavoir modules for the microprocessor part has been evaluated by implementing software modules on the conventional computer platform. This SoC-based context-aware system architecture has been developed to apply to mobile intelligent robots which would assist old people at home in a context-aware manner.

Development of the Efficient DAML+OIL Document Management System to support the DAML-S Services in the Embedded Systems (내장형 시스템에서 DAML-S서비스 지원을 위한 효율적인 DAML+OIL문서 관리 시스템)

  • Kim Hag Soo;Jung Moon-young;Cha Hyun Seok;Son Jin Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.36-49
    • /
    • 2005
  • Recently, many researchers have given high attention to the semantic web services based on the semantic web technology While existing web services use the XML-based web service description language, WSDL, semantic web services are utilizing web service description languages such as DAML-S in ontology languages. The researchers of semantic web services are generally focused on web service discovery, web service invocation, web service selection and composition, and web service execution monitoring. Especially, the semantic web service discovery as the basis to accomplish the ultimate semantic web service environment has some different properties from previous information discovery areas. Hence, it is necessary to develop the storage system and discovery mechanism appropriate to the semantic well description languages. Even though some related systems have been developed, they are not appropriate for the embedded system environment, such as intelligent robotics, in which there are some limitations on memory disk space, and computing power In this regard, we in the embedded system environment have developed the document management system which efficiently manages the web service documents described by DAML-S for the purpose of the semantic web service discovery, In addition, we address the distinguishing characteristics of the system developed in this paper, compared with the related researches.

Study precision attitude control of marine biological robot which utilizes a plurality of sensors (다중 센서를 이용한 해양 생체 로봇의 정밀 자세 제어 연구)

  • Kim, Min;Son, Kyung-Min;Park, Won-hyun;Kim, Gwan-Hyung;Byun, Ki-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.548-549
    • /
    • 2015
  • 무인 잠수정은 자율 무인잠수정(이하 'AUV' 또는 '자율무인잠수정'을 혼용)과 원격조정잠수정(이하 'ROV'로 지칭)으로 분류를 할 수 있다. ROV는 테더 게이블로 인한 작업 범위의 한계와 운동성능 효율이 떨어지는 단점을 지니고 있어, 테더 케이블이 필요 없는 AUV에 대한 필요성이 증대되고 있다. 추측 항법 시스템인 관성 항법 시스템(inertial navigation system, 이하 'INS'로 지칭)은 외부 도움없이 관성측정 장치(inertial measurement unit, 이하 'IMU'로 지칭)를 활용하여 구성된 시스템을 말한다. IMU는 자이로 스코프(gyroscope), 가속도계(accelerometer), 지자기(magnetic)센서로 구성된 측정 장치로 3개의 센서를 사용하여 상호 보정을 통한 기동 체의 위치, 속도 및 자세 정보를 제공한다. 복합항법시스템은 추측항법시스템이 가지는 누적오차와 측위 항법시스템이 가지는 외부환경에 대한 단점을 상호 보완하는 방법으로 연구가 진행 중이다. 하지만 심해서 또는 해양의 특성에 따라 측위 시스템이 사용되지 못하기 때문에 추측 항법시스템의 다양한 관성 센서를 활용한 상로 보완과 신호처리 방법을 통한 연구 개발이 진행 중이다. 다양한 센서 정보를 통합하는 목적으로 칼만 필터와 같은 최적 필터기법이 보편적으로 사용되고 있다. 칼만 필터는 확률 선형 시스템에 대하여 공정잡음 및 측정 잡음이 가우시안 확률 분포를 따를 때 최적의 추정자가 된다. 또한 가우시안 조건을 만족하지 않는 경우에도 선형 추정자 중에 추정 오차의 분산이 가장 작은 추정자이다. 칼만 필터가 최상의 성능을 발휘 하려면 공정잡음과 측정 잡음의 실제 값을 정확히 알아내는 것이 중요하다. 잡음 수준에 대한 정보가 부정확 할 경우 칼만 필터는 발산 할 수 있기 때문에 시스템에서 잡음 수준의 공산은 칼만 필터의 최적 이득을 결정하는 중요한 요소로 추정치에 큰 영향을 준다. 따라서 칼만 필터를 추측항법시스템에 적용 시킬 경우 실제 모텔의 잡음 공분산을 정확히 추정할 수 있는 기법이 요구된다. 추측항법시스템은 다양한 센서를 활용하기 때문에 움직이는 기동 표적에 적용시 잡음공분상이 변하기 때문에 항법시스템이 저하 될 수 있다. 본 연구에서는 다양한 센서를 융합하여 해양 생체 로봇의 정밀 자세 제어가 가능한 시스템을 제안하고자 한다.

  • PDF

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.