• Title/Summary/Keyword: 로봇학습

Search Result 727, Processing Time 0.037 seconds

Estimation of two-dimensional position of soybean crop for developing weeding robot (제초로봇 개발을 위한 2차원 콩 작물 위치 자동검출)

  • SooHyun Cho;ChungYeol Lee;HeeJong Jeong;SeungWoo Kang;DaeHyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, two-dimensional location of crops for auto weeding was detected using deep learning. To construct a dataset for soybean detection, an image-capturing system was developed using a mono camera and single-board computer and the system was mounted on a weeding robot to collect soybean images. A dataset was constructed by extracting RoI (region of interest) from the raw image and each sample was labeled with soybean and the background for classification learning. The deep learning model consisted of four convolutional layers and was trained with a weakly supervised learning method that can provide object localization only using image-level labeling. Localization of the soybean area can be visualized via CAM and the two-dimensional position of the soybean was estimated by clustering the pixels associated with the soybean area and transforming the pixel coordinates to world coordinates. The actual position, which is determined manually as pixel coordinates in the image was evaluated and performances were 6.6(X-axis), 5.1(Y-axis) and 1.2(X-axis), 2.2(Y-axis) for MSE and RMSE about world coordinates, respectively. From the results, we confirmed that the center position of the soybean area derived through deep learning was sufficient for use in automatic weeding systems.

Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area (3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구)

  • Gyeong-Hyu Seok;So-Haeng Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.551-562
    • /
    • 2024
  • This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.

Directionally Adaptive Aliasing and Noise Removal Using Dictionary Learning and Space-Frequency Analysis (사전 학습과 공간-주파수 분석을 사용한 방향 적응적 에일리어싱 및 잡음 제거)

  • Chae, Eunjung;Lee, Eunsung;Cheong, Hejin;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.87-96
    • /
    • 2014
  • In this paper, we propose a directionally adaptive aliasing and noise removal using dictionary learning based on space-frequency analysis. The proposed aliasing and noise removal algorithm consists of two modules; i) aliasing and noise detection using dictionary learning and analysis of frequency characteristics from the combined wavelet-Fourier transform and ii) aliasing removal with suppressing noise based on the directional shrinkage in the detected regions. The proposed method can preserve the high-frequency details because aliasing and noise region is detected. Experimental results show that the proposed algorithm can efficiently reduce aliasing and noise while minimizing losses of high-frequency details and generation of artifacts comparing with the conventional methods. The proposed algorithm is suitable for various applications such as image resampling, super-resolution image, and robot vision.

Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity (주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법)

  • Kim, Hye-Jin;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.299-306
    • /
    • 2022
  • In recent, sensors embedded in robots, equipment, and circuits have become common, and research for diagnosing device failures by learning measured sensor data is being actively conducted. This failure diagnosis study is divided into a classification model for predicting failure situations or types and a regression model for numerically predicting failure conditions. In the case of a classification model, it simply checks the presence or absence of a failure or defect (Class), whereas a regression model has a higher learning difficulty because it has to predict one value among countless numbers. So, the reason that regression modeling is more difficult is that there are many irregular situations in which it is difficult to determine one output from a similar input when predicting by matching input and output. Therefore, in this paper, we focus on input and output data with periodicity, analyze the input/output relationship, and secure regularity between input and output data by performing sliding window-based input data patterning. In order to apply the proposed method, in this study, current and temperature data with periodicity were collected from MMC(Modular Multilevel Converter) circuit system and learning was carried out using ANN. As a result of the experiment, it was confirmed that when a window of 2% or more of one cycle was applied, performance of 97% or more of fit could be secured.

Interactive Education of Introductory Engineering via Multimedia (멀티미디어를 이용한 인터액티브 공학개론 교육)

  • Park Sang-Joo;Yoon Joong-Sun
    • Journal of Engineering Education Research
    • /
    • v.7 no.3
    • /
    • pp.44-50
    • /
    • 2004
  • We introduce an introductory engineering education course for engineering majors and non-engineering majors. This course does not require any previous knowledge and experience on engineering. It requires strong curiosities and imaginations on current and future society we live in, where technology is inseparable ingredient. Course encourages attendees to explore fundamental issues of engineering: what is proper technology and what are proper ways of exercising engineering, issues dealt in soft engineering. Since course topics cover many aspects of technology, traditional learning methods fail to be successful and efficient. Various efficient learning methods have been proposed and implemented. We utilize various interactive tangible media, which include simulated thought experiments and physical media experiences. About twenty (20) episodes in short film format are produced based on scenario written according to related issues selected. Physical media like interactive robots are introduced for attendees' stimulated experiences. We summarize our exciting experiments on interactive teaching experiences at Pusan National University which include on/off-line interactions, assignments, projects, and evaluations.

Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets (3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정)

  • Do, Yong-Tae;Lee, Dae-Sik;Yoo, Seog-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.418-425
    • /
    • 1998
  • Stereo cameras are the most widely used sensing systems for automated machines including robots to interact with their three-dimensional(3D) working environments. The position of a target point in the 3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an important preliminary step for the task. Existing camera calibration techniques can be classified into two large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a rather complicated procedure to solve the nonlinear equations. In this paper, a method employing a neural network for the calibration problem is described for tackling the problems arisen when existing techniques are applied and the results are reported. Particularly, it is shown experimentally that by utilizing the function approximation capability of multi-layer neural networks trained by the back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement accuracy can be simply and efficiently increased.

  • PDF

Design and Implementation of Real-time High Performance Face Detection Engine (고성능 실시간 얼굴 검출 엔진의 설계 및 구현)

  • Han, Dong-Il;Cho, Hyun-Jong;Choi, Jong-Ho;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.33-44
    • /
    • 2010
  • This paper propose the structure of real-time face detection hardware architecture for robot vision processing applications. The proposed architecture is robust against illumination changes and operates at no less than 60 frames per second. It uses Modified Census Transform to obtain face characteristics robust against illumination changes. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data, and finally detected the face using this data. This paper describes the face detection hardware structure composed of Memory Interface, Image Scaler, MCT Generator, Candidate Detector, Confidence Comparator, Position Resizer, Data Grouper, and Detected Result Display, and verification Result of Hardware Implementation with using Virtex5 LX330 FPGA of Xilinx. Verification result with using the images from a camera showed that maximum 32 faces per one frame can be detected at the speed of maximum 149 frame per second.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

Emotion Classification of User's Utterance for a Dialogue System (대화 시스템을 위한 사용자 발화 문장의 감정 분류)

  • Kang, Sang-Woo;Park, Hong-Min;Seo, Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.459-480
    • /
    • 2010
  • A dialogue system includes various morphological analyses for recognizing a user's intention from the user's utterances. However, a user can represent various intentions via emotional states in addition to morphological expressions. Thus, a user's emotion recognition can analyze a user's intention in various manners. This paper presents a new method to automatically recognize a user's emotion for a dialogue system. For general emotions, we define nine categories using a psychological approach. For an optimal feature set, we organize a combination of sentential, a priori, and context features. Then, we employ a support vector machine (SVM) that has been widely used in various learning tasks to automatically classify a user's emotions. The experiment results show that our method has a 62.8% F-measure, 15% higher than the reference system.

  • PDF

Self-driven scheduling service for dual-income families (맞벌이 가정 아이의 자기 주도적 일정관리 서비스)

  • Lee Hong, Eun-young;Kim, Hyung-sun;Park, Ji-hyo;Beak, Seung-min;Park, Su e
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.137-140
    • /
    • 2018
  • As the number os working-class households has increased and As the number of working-class households has increased and the birth rate has decreased, more than a third of all elementary school students are left alone. While elementary schools across the nation have implemented a policy of after-school care, even that has reduced the number of classrooms in the government. As such, parents cannot avoid leaving their children alone at home and wonder about their day. For these parents and older elementary school students, they came up with a service that allows them to plan and implement their own work. The service enables children to develop self-regulating learning skills and allows them to receive feedback through the app on what plans and practices a child left alone at home is planning.

  • PDF