• Title/Summary/Keyword: 로보트 매니퓰레이터

Search Result 105, Processing Time 0.021 seconds

Computer simulation system of robot manipulator motion (로보트 매니퓰레이터 운동의 컴퓨터 시뮬레이션 시스템)

  • 김창부;윤장로
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.539-544
    • /
    • 1991
  • In order to verify robot motions for a desired work, it is necessary to visualize it on a computer screen. This paper presents a simulation algorithm for robot manipulator motion. Kinematic description is based on the Denavit- Hartenberg link representation. In order to be applied to various types of the robot manipulator, inverse kinematics make use of the Newton-Raphson iterative method with the least squares method. Joint variables are interpolated by the lowest polynomial segment satisfying acceleration continuity. The robot motions are generated and then animated on a computer screen in the form of skeleton type.

  • PDF

Motion and force control of robot manipulator (로보트 매니퓰레이터의 운동과 힘 제어)

  • 이남구;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.174-178
    • /
    • 1991
  • In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.

  • PDF

Self-Tuning Pole-Placement Control Of Robotic Manipulators With An Inverse Modela (로보트 매니퓰레이터의 역모델을 갖는 자기동조 극배치 제어)

  • 이은옥;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.50-53
    • /
    • 1988
  • This paper presents an approach to the position control of a robot manipulator by using a self-tuning pole-placement controller with an inverse model. The linearized independent difference equations of manipulator motion are obtained, and the parameters of these models are estimated on line. The controller is composed of two parts, the primary controller obtains desired torques by using an inverse model and the secondary controller computes variational torques on the basis of induced perturbation equations by minimizing a quadratic criterion with a closed-loop pole-placement. Simulation is performed to demonstrate the effectiveness of this approach.

  • PDF

A hybrid position/force control for robot manipulator with position controllers (위치 제어기를 갖는 로보트 매니퓰레이터의 Hybrid 위치/힘 제어)

  • 이병부;정광손;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.638-641
    • /
    • 1992
  • In this paper, a hybrid position/force control scheme is proposed. The control scheme modifies the position command for force control against constraint surface of environment and is very simply designed and implemented. The merits of the control scheme are that it can cope with change of constraint conditions and small position inaccuracy of the environment. A constraint surface position observer is also proposed to reduce disturbances on controlled force.

  • PDF

A stable composite controller design for flexible joint robot manipulators (탄성관절을 갖는 로보트 매니퓰레이터의 안정한 합성제어기 설계)

  • 이만형;백운보;이권순;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.266-271
    • /
    • 1992
  • This paper presents a new stable composite control law for the flexible joint robot manipulators, which incorporate the additional stabilizing control law with sliding property. The singularly perturbated models include inertia moments functions of the deformations of actuator. The newly defined fast controller variable is computed from the corrected reduced-order model without additional computational loads. The simulations for 2 DOF flexible joint manipulator show that the proposed schemes are more stable than conventional one, and especially effective for the manipulator with high joint-flexibilities.

  • PDF

Adaptive minimum-time optimal control of robot manipulator (로보트 매니퓰레이터에 대한 적응 최소시간 최적제어)

  • 정경훈;박정일;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.258-262
    • /
    • 1990
  • Several optimum control algorithms have been proposed to minimize the robot cycle time by velocity scheduling. Most of these algorithms assume that the dynamic and kinematic characteristics of a manipulator are fixed. This paper presents the study of a minimum-time optimum control for robotic manipulators considering parameter changes. A complete set of solutions for parameter identification of the robot dynamics has been developed. The minimum-time control algorithm has been revised to be updated using estimated parameters from measurements.

  • PDF

Hybrid position/force controller design of the robot manipulator using neural network (신경 회로망을 이용한 로보트 매니퓰레이터의 Hybrid 위치/힘 제어기의 설계)

  • 조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.24-29
    • /
    • 1990
  • In this paper ,ie propose a hybrid position/force controller of a robot manipulator using double-layer neural network. Each layer is constructed from inverse dynamics and Jacobian transpose matrix, respectively. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using a PUMA 560 manipulator.

  • PDF

Robust controller for actuator plus manipulator with dynamic parameter uncertainty (동적인 매개변수 불확실성을 갖는 로보트 매니퓰레이터와 조작기에 대한 강건한 제어기)

  • 정을호;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.161-166
    • /
    • 1990
  • In this paper, Proposed the robust controller for robot manipulator plus actuator with dynamic parameter uncertainties. In general, errors and uncertainties system parameters exist more or less between the actual system and mathematical model. To reduce these trems, used Lyapunov stability theorem. The performance of the controller is evaluated for the three degree of freedom robot manipulator plus actuator model with uncertainties of parameters and model errors.

  • PDF

A study on robot manipulator control by hand variables (핸드변수에 의한 로보트 매니퓰레이터 제어에 관한 연구)

  • 정광손;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.58-62
    • /
    • 1987
  • In this paper, path planning, modelling, and control of manipulators are described. The path planning deals with specifying how to define the motion of hand along straight line paths in the minimum amount of time. A new model was developed for the manipulator, which is based on the classical equations of motion of a rigid body. A new control algorithm was developed which controls the manipulator in terms of the position and orientation of the hand.

  • PDF

Pole placement self-tuning control of robot manipulators (극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF