• 제목/요약/키워드: 로버스트법

검색결과 40건 처리시간 0.025초

자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구 (A Comparison of Robust Parameter Estimations for Autoregressive Models)

  • 강희정;김순영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2000
  • 본 논문에서는 가장 많이 사용되는 시계열 모형중의 하나인 자기회귀모형에서 모수를 추정하는 방법으로 최소 절대 편차 추정법(least absolute deviation estimation)을 포함한 로버스트한 추정방법 (robust estimation)의 사용을 제안하고 모의 실험을 통하여 이러한 방법들을 기존의 최소 제곱 추정 방법과 예측의 관점에서 비교 검토하여 시계열 자료분석에서의 로버스트한 모수 추정 방법의 유효성을 확인해 보고자 한다.

  • PDF

공간통계분석에서 이상점 수정을 위한 방법비교

  • 이진희;신기일
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.275-280
    • /
    • 2003
  • 공간 자료에서 이상점이 존재할 경우 변이도(Variogram)를 추정함에 있어 그 효과를 줄이기 위한 방법으로 로버스트(robust) 변이도를 이용한다. 그러나 이상점이 존재하는 자료분석에서 로버스트 변이도를 사용하기에 앞서 이상점을 수정한 자료를 사용하였을 경우 그 효율성 또한 좋다고 알려져 있다. 본 논문에서는 이상점이 존재하는 자료를 분석함에 있어 기존의 이상점 수정법 및 새로운 이상점 수정법의 효율성을 비교하였다.

  • PDF

보조 정보에 의한 이중적 로버스트 대체법 (Doubly Robust Imputation Using Auxiliary Information)

  • 박현아;전종우;나성룡
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.47-55
    • /
    • 2011
  • 비대체와 회귀대체는 조사변수의 모형과 조사변수와 보조변수의 관계에 의존하며 모형이 성립되지 않는 경우 이들 대체법을 이용한 추정량의 불편성은 보장되지 않는다. 본 연구에서는 모형이 성립되지 않는 경우에도 추정량의 근사적 불편성이 성립되는 로버스트 대체법을 개발한다. 대체법 개발시 보조변수의 모수 정보를 이용하여 추정량의 효율 증대를 가져오게 한다. 모의실험을 실시하여 본 연구에 대한 이론적 결과의 타당성을 보인다.

공간통계분석에서 이상점 수정방법의 효율성비교 (On the Efficiency of Outlier Cleaners in Spatial Data Analysis)

  • 이진희;신기일
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.327-336
    • /
    • 2004
  • 이상점이 존재하는 공간자료(spatial data) 분석에서 이상점(outlier)의 영향력를 줄이기 위 한 방법으로 로버스트 변이도(robust variogram)를 사용한다. 최근 이상점을 먼저 수정한 후 변이도를 추정하는 방법을 사용하면 더 좋은 분석결과를 얻을 수 있다는 것이 알려졌다. 본 논문에서는 이상점이 존재하는 공간자료 분석에서 Mugglestone 등(2000)이 제안한 이상점 수정법과 본 논문에서 제안한 새로운 이상점 수정법의 효율성을 비교하였다.

다구찌 방법을 이용한 선형직류모터의 로버스트 설계 (Robust Design of a Linear DC Motor Using Taguchi Method)

  • 김성수;정수진;리영훈;김동희;노채균
    • 조명전기설비학회논문지
    • /
    • 제15권4호
    • /
    • pp.51-56
    • /
    • 2001
  • 본 논문은 구조가 간단하고, 고속, 고정밀 위치결정이 가능하기 때문에 사무 자동화 및 공장자동화 시스템에 대한 적용이 급속히 확대되고 있는 선형직류모터의 로버스트 설계에 관하여 제안하였다. 로버스트 설계 방법은 다구찌 방법을 이용하였으며, 직교배열표를 이용하여 실험계획법을 수립하였다. 본 연구의 진행 과정은 먼저 중요 파라메터를 선정하였고, 다음으로 신호대 잡음(S/N)비를 적용하여 모터의 성능을 평가한 후, 변수의 최적 값을 결정하였다. 이 방법을 사용함으로써 짧은 시간 안에 로버스트 설계가 가능하였으며, 최종결과 모터의 성능이 향상됨을 알 수 있었다.

  • PDF

잡음영상에서 로버스트 순위-순서 검정을 이용한 효과적인 에지검출 (Efficient Edge Detection in Noisy Images using Robust Rank-Order Test)

  • 임동훈
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.147-157
    • /
    • 2007
  • 에지검출은 컴퓨터비전과 영상처리 시스템에서 널리 사용되는 단계이다. 본 논문에서는 잡음영상에서 효율적인 에지검출을 위해 이표본 위치 문제에서 월콕슨 검정의 대안인 로버스트 순위-순서 검정에 기초한 새로운 검출법을 제안하였다. 제안된 방법은 $\delta$-에지모형하에서 $5\times5$ 윈도우의 부분 픽셀만으로 구성된 근방영역 간에 통계적으로 유의한 차이가 있는지를 조사하였다. 제안된 에지 검출법의 성능을 평가하기 위해 실제영상과 인조영상을 가지고 영상실험을 통하여 얻은 에지맵과 객관적인 척도하에서 양적으로 비교 분석하였다.

로버스트 우선순위 결정을 위한 Fuzzy 다기준 의사결정기법의 적용 (Application of Fuzzy Multi-criteria Decision Making Techniques for Robust Prioritization)

  • 한봉구;정은성
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.917-926
    • /
    • 2013
  • 본 연구는 로버스트 우선순위 결정을 위한 퍼지 다기준 의사결정기법의 타당성을 수자원 계획수립 문제에 적용하여 제시하였다. 즉 일반적인 다기준 의사결정 기법인 가중합계법, 계층화분석과정, 수정계층화분석과정, TOPSIS 방법과 퍼지가중합계법, 퍼지계층화분석과정, 퍼지수정계층화분석과정, 퍼지 TOPSIS 방법을 사용하여 결과를 비교하였다. 이때 사용된 각 평가기준별 자료는 동일하게 표준화되었으며 각 가중치도 동일한 방법으로 결정되었다. 분석결과 다기준 의사결정방법에 따라 조금씩 다른 순위가 도출되었으나, 퍼지 다기준 의사결정기법을 사용할 경우 사업들의 순위 변동성이 퍼지를 사용하지 않을 때보다 크지 않아 보다 일관된 순위를 유도하였다. 따라서 사업의 우선순위를 결정하는 문제에서 자료와 가중치의 불확실성을 고려할 수 있는 퍼지 다기준 의사결정기법을 활용해서 방법의 변화로 인한 순위의 변동성을 최소화해서 로버스트 순위를 결정하는 것이 보다 효과적이다.

정규-지수분포에 대한 최소밀도함수승간격 추정법 (Minimum Density Power Divergence Estimation for Normal-Exponential Distribution)

  • 박노진
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.397-406
    • /
    • 2014
  • 최소밀도함수승간격 추정법은 Baus 등 (1998)에 의해 처음 소개된 이후 많은 관심의 대상이 되었다. 최소밀도함수승간격 추정량은 우수한 로버스트 성질을 갖고 효율성도 최우추정량에 필적한 것으로 알려져 있다. 본 논문에서는 생물정보학에서 사용되는 노말-지수 분포에 근거한 추정량을 최소밀도함수승간격 추정법을 사용하여 구하는 방법을 다루고자 한다. 그런데 그 과정에서 간격을 적분을 통해 구하는 것이 매우 어려움으로 인해 직접적인 적분 대신 라플라스 근사를 시도할 것을 제안한다. 그 결과 추정량이 다소 효율성이 줄어들지만 로버스트 성질을 갖고 있음을 수학적 방법과 모의실험을 통하여 보였다.

신경망을 이용한 로버스트 주성분 분석에 관한 연구 (On Robust Principal Component using Analysis Neural Networks)

  • 김상민;오광식;박희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권1호
    • /
    • pp.113-118
    • /
    • 1996
  • 주성분 분석은 자료압축, 특징추출, 통신이론, 패턴인식 그리고 화상처리등의 컴퓨터 공학분야에서 중요하게 사용되고 있다. Oja(1982,1989,1992)는 확률적 경사 강하법(SGA:Stochastic Gradient Ascent)을 이용한 제한된 헵규칙을 제안하여 주성분 분석에 사용하였다. 그러나, 이 규칙은 이상치에 민감하므로 이상치의 영향을 줄이기 위해, Xu & Yuille(1995)는 통계물리 방법을 이용한 로버스트 에너지함수를 생성하여 로버스트 주성분 분석방법을 제안하였다. 또한 Devlin et.al(1981)은 M-추정량을 이용하여 주성분 분석을 하였다. 본 논문에서는 Oja(1992)의 규칙과 Xu & Yuille(1995)의 로버스트 에너지함수를 이용하여 신경망을 구성하였다. 그리고, Devlin et.al(1981)이 제안한 시뮬레이션조건하에서 실험을 하였다. 실험한 결과와 Devlin et.al(1981)의 결과를 비교, 분석함으로써, 신경망의 성능을 확인하고자 한다.

  • PDF

두 회귀직선의 평행성에 대한 로버스트 검정 (A robust test for the parallelism of two regression lines)

  • 남호수;송문섭;신봉섭
    • 응용통계연구
    • /
    • 제8권2호
    • /
    • pp.77-86
    • /
    • 1995
  • 본 논문에서는 두 회귀직선의 평행성에 대한 로버스트 검정법을 제안하고, 모의실험과 예를 통하여 기존의 방법들과 유의수준의 안정성 및 검정력의 측면에서 비교하였다. 제안된 검정법은 Song et al. (1994b)에 의하여 제안된 최소절사제곱 추정량을 초기치로 하는 일단계 GM-추정량에 기초를 두고 있다. 이 추정량은 최대붕괴점과 유계영향함수를 갖는 것으로 알려져 있다.

  • PDF