• Title/Summary/Keyword: 로그-로지스틱분포

Search Result 15, Processing Time 0.02 seconds

Log-density Ratio with Two Predictors in a Logistic Regression Model (로지스틱 회귀모형에서 이변량 정규분포에 근거한 로그-밀도비)

  • Kahng, Myung Wook;Yoon, Jae Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2013
  • We present methods for studying the log-density ratio that enables the selection of the predictors and the form to be included in the logistic regression model. Under bivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of two predictors. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms. We also explore other conditions in which the crossproduct and quadratic terms are not needed in the logistic regression model.

The Comparative Software Reliability Cost Model of Considering Shape Parameter (형상모수를 고려한 소프트웨어 신뢰성 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The shape parameter using the Erlang and Log-logistic model that is widely used in the field of reliability problems presented. The software failure model was used finite failure non-homogeneous Poisson process model, the parameters estimation using maximum likelihood estimation was conducted. In comparison result of software cost model based on the Erlang distribution and the log-logistic distribution software cost model, because Erlang model is to predict the optimal release time can be software, but the log-logistic model to predict to optimal release time can not be, Erlang distribution than the log-logistic distribution appears to be effective. In this research, software developers to identify software development cost some extent be able to help is considered.

The Comparative Study for Truncated Software Reliability Growth Model based on Log-Logistic Distribution (로그-로지스틱 분포에 근거한 소프트웨어 고장 시간 절단 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Due to the large-scale application software syslmls, software reliability, software development has animportantrole. In this paper, software truncated software reliability growth model was proposed based on log-logistic distribution. According to fixed time, the intensity function, the mean value function, the reliability was estimated and the parameter estimation used to maximum likelihood. In the empirical analysis, Poisson execution time model of the existiog model in this area and the log-logistic model were compared Because log-logistic model is more efficient in tems of reliability, in this area, the log-logistic model as an alternative 1D the existiog model also were able to confim that you can use.

Comparison of log-logistic and generalized extreme value distributions for predicted return level of earthquake (지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교)

  • Ko, Nak Gyeong;Ha, Il Do;Jang, Dae Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.107-114
    • /
    • 2020
  • Extreme value distributions have often been used for the analysis (e.g., prediction of return level) of data which are observed from natural disaster. By the extreme value theory, the block maxima asymptotically follow the generalized extreme value distribution as sample size increases; however, this may not hold in a small sample case. For solving this problem, this paper proposes the use of a log-logistic (LLG) distribution whose validity is evaluated through goodness-of-fit test and model selection. The proposed method is illustrated with data from annual maximum earthquake magnitudes of China. Here, we present the predicted return level and confidence interval according to each return period using LLG distribution.

A study on log-density with log-odds graph for variable selection in logistic regression (로지스틱회귀모형의 변수선택에서 로그-오즈 그래프를 통한 로그-밀도비 연구)

  • Kahng, Myung-Wook;Shin, Eun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.99-111
    • /
    • 2012
  • The log-density ratio of the conditional densities of the predictors given the response variable provides useful information for variable selection in the logistic regression model. In this paper, we consider the predictors that are needed and how they should be included in the model. If the conditional distributions are skewed, the distributions can be considered as gamma distributions. Under this assumption, linear and log terms are generally included in the model. The log-odds graph is a very useful graphical tool in this study. A graphical study is presented which shows that if the conditional distributions of x|y for the two groups overlap significantly, we need both the linear and quadratic terms. On the contrary, if they are well separated, only the linear or log term is needed in the model.

Variable Selection with Log-Density in Logistic Regression Model (로지스틱회귀모형에서 로그-밀도비를 이용한 변수의 선택)

  • Kahng, Myung-Wook;Shin, Eun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • We present methods to study the log-density ratio of the conditional densities of the predictors given the response variable in the logistic regression model. This allows us to select which predictors are needed and how they should be included in the model. If the conditional distributions are skewed, the distributions can be considered as gamma distributions. A simulation study shows that the linear and log terms are required in general. If the conditional distributions of xjy for the two groups overlap significantly, we need both the linear and log terms; however, only the linear or log term is needed in the model if they are well separated.

The Study of Software Optimal Release Time Based on Log-Logistic Distribution (로그로지스틱 분포특성에 근거한 소프트웨어 최적 방출시기에 관한 연구)

  • Kim, Hee-Cheul;Park, Hyoung-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.176-178
    • /
    • 2011
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구되었다. 인도시기에 관한 모형은 무한 고장수에 의존하는 비동질적인 포아송 과정을 적용하였다. 이러한 포아송 과정은 소프트웨어의 결함을 제거하거나 수정 작업 중에도 새로운 결함이 발생될 가능성을 반영하는 모형이다. 강도함수는 로그-로지스틱 패턴을 이용하였다. 따라서 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 방출시간이 최적 소프트웨어 방출 정책이 된다.

  • PDF

The Comparative Study of Software Optimal Release Time Based on Log-Logistic Distribution (Log-Logistic 분포 모형에 근거한 소프트웨어 최적방출시기에 관한 비교연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, because of the possibility of introducing new faults when correcting or modifying the software, infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied log-logistic distribution which can capture the increasing! decreasing nature of the failure occurrence rate per fault. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, make out estimating software optimal release time.

  • PDF

The Comparative Study of Software Optimal Release Time Based on Log property Distribution (로그형 특성분포에 근거한 소프트웨어 최적 방출시기에 관한 비교 연구)

  • Kim, Hee-Cheul;Park, Hyoung-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.149-152
    • /
    • 2010
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구되었다. 인도시기에 관한 모형은 무한 고장 수에 의존하는 비동질적인 포아송 과정을 적용하였다. 이러한 포아송 과정은 소프트웨어의 결함을 제거하거나 수정 작업 중에도 새로운 결함이 발생될 가능성을 반영하는 모형이다. 적용모형은 여러 수명 분포들을 적합시키는데 효율적인 특성을 가진 콤페르쯔, 파레토, 로그-로지스틱 모형과 같은 로그형 특성분포를 이용하였다. 따라서 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 방출시간이 최적 소프트웨어 방출 정책이 된다. 본 논문의 수치적인 예에서는 고장 간격 시간 자료를 적용하고 모수추정 방법은 최우추정법을 이용하여 최적 방출시기를 추정하였다.

  • PDF

Exploring interaction using 3-D residual plots in logistic regression model (3차원 잔차산점도를 이용한 로지스틱회귀모형에서 교호작용의 탐색)

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.177-185
    • /
    • 2014
  • Under bivariate normal distribution assumptions, the interaction and quadratic terms are needed in the logistic regression model with two predictors. However, depending on the correlation coefficient and the variances of two conditional distributions, the interaction and quadratic terms may not be necessary. Although the need for these terms can be determined by comparing the two scatter plots, it is not as useful for interaction terms. We explore the structure and usefulness of the 3-D residual plot as a tool for dealing with interaction in logistic regression models. If predictors have an interaction effect, a 3-D residual plot can show the effect. This is illustrated by simulated and real data.