Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.66-71
/
2010
BPMS, ERP, SCM 등 프로세스 인식 정보시스템들이 널리 쓰이게 되면서 프로세스 마이닝에 대한 연구가 활발하게 이루어지고 있다. 프로세스 마이닝은 프로세스가 실행되는 동안 저장된 이벤트 로그로부터 정보를 추출하는 기법이다. 추출된 로그정보는 비즈니스 프로세스의 분석 및 재설계에 사용될 프로세스 모델을 생성하게 된다. 프로세스 마이닝 기법은 프로세스의 자동화 및 기업의 업무정보들을 관리하는 프로세스 기반 정보시스템의 정확성 및 효율성을 위한 중요한 부분을 차지하지만 현재까지의 연구는 생성된 이벤트 로그로부터 프로세스 모델을 재설계하는 프로세스 발견 기법 (Process Discovery Technique)을 적용한 부분에서만 활발히 진행되었다. 프로세스 마이닝은 프로세스 발견 기법 외에도 프로세스 적합성검사 기법 (Process Conformance Checking Technique) 및 프로세스 확장 기법 (Process Extension Technique)이 존재한다. 이들은 많은 프로세스 발견 기법에 대한 연구들이 진행되고 나서야 최근 프로세스 마이닝의 이슈로 떠오르고 있다. 본 논문에서는 프로세스 적합성 검사를 위해 수집된 이벤트 로그와 기존에 나와 있는 여러 가지 프로세스 발견 알고리즘을 통해 생성된 프로세스를 수치적으로 비교할 수 있는 두 가지 애트리뷰트를 제시하였다.
최근 정보기술의 발달로 기업의 비즈니스 모델이 아날로그에서 디지털로 전환되고 있다. 기업에서는 다양한 서비스 제공을 위해 고객의 개인정보를 수집하고 있으며, 이러한 정보는 보안 위협의 대상이 되고 있다. 대다수 기업에서는 다양한 분야의 보안 솔루션이 구축 운용되고 있으나, 솔루션 개발사들의 서로 다른 보안 로그들로 인해 통합 분석에 어려움을 겪고 있으며 이로 인해 보안 모니터링 업무 효율이 낮아지는 문제점을 안고 있다. 본 연구에서는 시간적 연관성을 기반으로 통합 보안 로그를 분석 하고 시나리오화 하여 좀 더 빠르고 정확한 개인정보 유출의 이상징후를 탐지할 수 있는 방안을 제안한다.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.4
/
pp.5-19
/
2011
The purpose of this study is to identify possible needs for system improvements and reflect them on the operation and development of the system as a result of the usability assessment of an information site in science and technology. For this study, a variety of data collection techniques, including search logs, interviews, and think-alouds, were used. The search log data was processed to quantify four evaluation aspects, which were the effectiveness, efficiency, satisfaction, and errors. The verbal data collected by think-alouds and post-interviews were used to identify possible needs of enhancement in a qualitative analysis. The comparison of the usability before and after the system enhancement revealed an increase of 15 points for effectiveness, 35 seconds decrease in efficiency, 5 points increase in satisfaction, and 1.1 errors decreased, implying an overall improvement of the usability of the current system.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.4
/
pp.859-868
/
2018
Previous research related to recovering deleted data in database has been mainly based on transaction logs or detecting and recovering data using original source files by physical collection method. However there was a limit to apply if the transaction log does not exist in the server or it is not possible to collect the original source file because a database server owner does not permit stopping the database server because of their business loss or infringement at the scene. Therefore it is necessary to examine various collection methods and check the recoverability of the deleted data in order to handling the constraints of evidence collection situation. In this paper we have checked an experiment that the recoverability of deleted data in the original database source according to logical and physical collection methods on digital forensic investigation of Microsoft SQL Server database.
Customers' fixed characteristics have often been used to predict customer behavior. It has recently become possible to track customer web logs as customer activities move from offline to online. It has become possible to collect large amounts of web log data; however, the researchers only focused on organizing the log data or describing the technical characteristics. In this study, we predict the decision-making time until each customer makes the first reservation, using Airbnb customer data provided by the Kaggle website. This data set includes basic customer information such as gender, age, and web logs. We use various methodologies to find the optimal model and compare prediction errors for cases with web log data and without it. We consider six models such as Lasso, SVM, Random Forest, and XGBoost to explore the effectiveness of the web log data. As a result, we choose Random Forest as our optimal model with a misclassification rate of about 20%. In addition, we confirm that using web log data in our study doubles the prediction accuracy in predicting customer behavior compared to not using it.
Park, Hyunho;Kwon, Eunjung;Byon, Sungwon;Shin, Won-Jae;Jang, Dong Man;Jung, Eui-Suk;Lee, Yong-Tae
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.546-548
/
2019
In recent days, vehicle safety technologies for supporting safe vehicle driving attract public attention. This paper proposes multi-log platform based vehicle safety system (MLPVSS) that analyzes multi-log data (i.e., log-data on human, object, and place) and supports vehicle safety. The MLPVSS gathers sensor data and image data on the human, object, and place, and then generates multi-log data that are context-aware data on the human, object, and place. The MLPVSS can detect, predict, and response vehicle dangers. The MLPVSS can contribute to reduce car accidents.
Journal of Korea Society of Industrial Information Systems
/
v.19
no.6
/
pp.63-76
/
2014
Recently the desired information has been recommended to many people in a number of ways using the smartphone. Though there are many applications for that purpose, but most applications does not consider the user's current situation. In order to automatically recommend the information considering the user's situation, it is necessary to predict the future behavior of the user from the records of the past behavior of the user. Therefore, in this paper, we propose a method that predicts the user's future behavior through association analysis based on the user's current behavior which is identified by applying the user's current situation data collected via a smartphone to the Bayesian network built from the user's life log. From the experiments and analysis for five students and five virtual workers, the usefulness of the proposed method is confirmed.
A Lifelog management system provides users with services to store, manage, and search their life logs. This paper proposes a fully-automatic collecting method of real world social contacts and lifelog search engine using collected social contact information as keyword. Wireless short-distance network devices in mobile phones are used to detect social contacts of their users. Human-Bluetooth relationship matrix is built based on the frequency of a human-being and a Bluetooth device being observed at the same time. Results show that with 20% of social contact information out of full social contact information of the observation times used for calculation, 90% of human-Bluetooth relationship can be correctly acquired. A lifelog search-engine that takes human names as keyword is suggested which compares two vectors, a row of Human-Bluetooth matrix and a vector of Bluetooth list scanned while a lifelog was created, using vector information retrieval model. This search engine returns more lifelog than existing text-matching search engine and ranks the result unlike existing search-engine.
In this paper, for the evaluation of the ease of a particular Web site (www.appbelt.net), insert the log tracking code for Google Analytics in a page of the Web site to collect behavioral data of visitor and has studied the improvement measures for the problems of the Web site, after the evaluation of the overall quality of the Web site through the evaluation of Coolcheck. These findings set the target value of the company's priority (importance) companies want to influence the direction of the business judgment are set up correctly, and the user's needs and behavior will be appropriate for the service seems to help improvement.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2003.12a
/
pp.179-184
/
2003
컴퓨터를 통한 침입을 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 본 논문에서는 클러스터링 기법을 응용한 새로운 네트워크 비정상행위 탐지 기법을 제안한다. 이를 위해서 정상 행위를 다양한 각도에서 분석될 수 있도록 네트워크 로그로부터 여러 특징들을 추출하고 각 특징에 대해서 클러스터링 알고리즘을 이용하여 정상행위 패턴을 생성한다. 제안된 방법에서는 정상행위 패턴 즉 클러스터를 축약된 프로파일로 생성하는 방법을 제시하며 제안된 방법의 성능을 평가하기 위해서 DARPA에서 수집된 네트워크 로그를 이용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.