• Title/Summary/Keyword: 레일리

Search Result 349, Processing Time 0.189 seconds

A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff (계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.121-127
    • /
    • 2010
  • In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.

Performance Analysis of a Multi-Carrier DS-CDMA/BPSK Signal with Hybrid SC/MRC-$L_{c}/L$ Diversity Reception in Multipate Fading Channe (다중경로 페이딩 채널에서 하이브리드 SC/MRC-$L_{c}/L$ 다이버시티 수신 Multi-Carrier DS-CDMA /BPSK 신호의 성능 해석)

  • 김영철;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.630-643
    • /
    • 2001
  • In this paper, the performance of a Multi-Carrier DS-CDMA system with Hybrid $SC/MRC- L_{c}/L$ diversity in the multipath Rayleigh fading environment is analyzed and compared with that of a Wideband DS-CDMA system. Each carriers of the number of the input diversity branches in the Multi-Carrier DS-CDMA system is L and among L, the branches of $L_c$ are chosen to be maximum-ratio-combined. And the diversity outputs are coherent-detected and despread by the correlator of each carrier. As the result, we have known that the structure of the Wideband DS-CDMA system with Hybrid $SC/MRC-L_{c}/L$ diversity reception becomes simple due to no synchronization of bit or phase and in terms of the error performance, the performance of Hybrid $SC/MRC- L_{c}/L$ diversity is better than that of selection diversity, but worse than that of MRC diversity. Moreover, the performance of a Multi-Carrier DS-CDMA system is better than that of a Wideband DS-CDMA system in multipath Rayleigh fading channel since Hybrid $SC/MRC- L_c/L$ diversity can obtain gain from each diversity branch. In case four carriers are used and required BER is $10^{-6}$ in wireless data communication, Hybrid SC/MRC-2/4 diversity can increase more 17 users than Hybrid SC/MRC-2/3 diversity because the better input branches can be selected through increase of input branches.

  • PDF

Elastic Wave Modeling Including Surface Topography Using a Weighted-Averaging Finite Element Method in Frequency Domain (지형을 고려한 주파수 영역 가중평균 유한요소법 탄성파 모델링)

  • Choi, Ji-Hyang;Nam, Myung-Jin;Min, Dong-Joo;Shin, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Abstract: Surface topography has a significant influence on seismic wave propagation in a reflection seismic exploration. Effects of surface topography on two-dimensional elastic wave propagation are investigated through modeling using a weighted-averaging (WA) finite-element method (FEM), which is computationally more efficient than conventional FEM. Effects of air layer on wave propagation are also investigated using flat surface models with and without air. To validate our scheme in modeling including topography, we compare WA FEM results for irregular topographic models against those derived from conventional FEM using one set of rectangular elements. For the irregular surface topography models, elastic wave propagation is simulated to show that breaks in slope act as a new source for diffracted waves, and that Rayleigh waves are more seriously distorted by surface topography than P-waves.

Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt (중부 옥천대에 분포하는 쥬라기 보은 화강섬록암의 암석화학과 마그마과정)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.188-199
    • /
    • 1996
  • Boeun granodiorite, which intruded into the metasedimentary rocks of the Ogcheon Group, show chemical natures of metaluminous and calc-alkaline. Generating and emplacing environment of the Boeun granodiorite would have been a active continental margin. Comparing to the contemporaneous Inje-Hongcheon granodiorite in the Gyeonggi massif, the Boeun granodiorite seems likely to have formed under more immature continental arc environment. Compositional changes of major, trace and rare earth elements in granodiorite and felsic dyke are not certain to indicate crystallization differentiation. From this fact, the simple fractional crystallization model would be in question to explain the magma process which controlled the formation of the Boeun granitic mass. The model calculations for Rayleigh fractionation, fractionation with variable major-component composition, assimilation-fractional crystallization (AFC) were carried out to examine the magma process of the mass. The results of former two models do not agree with the compositional variations in the mass. The AFC model can be, however, applied to the magma process. The conditions for AFC process are (1) composition of assimilated wallrock is similar to that of primary magma. (2) assimilating rate is similar to crystallizing rate, and (3) mass of assimilated wallrock is about 10% of that of the magma. These conditions deny a possibility that the assimilated wallrock was the metasedimentary rocks of the Ogcheon Group. This indicates that after having experienced the assimilation process in deeper crust, the granodiorite magma intruded into the Ogcheon group. Every model calculating suggests that the felsic dyke was differentiated not from the granodiorite magma, but from a different source magma.

  • PDF

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.

High-Frequency Bottom Loss Measured at Near-Normal Incidence Grazing Angle in Jinhae Bay (진해만에서 측정된 높은 수평입사각에서의 고주파 해저면 반사손실)

  • La, Hyoung-Sul;Park, Chi-Hyung;Cho, Sung-Ho;Choi, Jee-Woong;Na, Jung-Yul;Yoon, Kwan-Seob;Park, Kyung-ju;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.223-228
    • /
    • 2010
  • High-frequency bottom loss measurements for grazing angle of $82^{\circ}$ in frequency range 17-40 kHz were made in Jinhae bay in the southern part of Korea. Observations of bottom loss showed the strong variation as a function of frequency, which were compared to the predicted values using two-layered sediment reflection model. The geoacoustic parameters including sound speed, density and attenuation coefficient for the second sediment layer were predicted from the empirical relations with the mean grain size obtained from sediment core analysis. The geoacoustic parameters for the surficial sediment layer were inverted using Monte Carlo inversion algorithm. A sensitivity study for the geoacoustic parameters showed that the thickness of surficial sediment layer was most sensitive to the variation of the bottom loss.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.