• Title/Summary/Keyword: 레이저 통신장치

Search Result 63, Processing Time 0.021 seconds

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds (초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가)

  • Ok, Min-Hwan;Choi, Su-Yong;Choe, Jae-Heon;Lee, Kwan-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.443-451
    • /
    • 2020
  • A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

An Undergraduate Level Polarimeter and Specific Rotation at 543 nm of Sucrose (학부용 편광계와 543 nm에서 설탕의 비회전 측정)

  • Jung, Semin
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.241-245
    • /
    • 2012
  • Measurements of the optical activity become very important issues in fields related to polymers, optical communications, astronomy, physics and many more. Hence it need to introduce this subject in our regular curriculum. In this experiment, an inexpensive, reliable, motorized polarimeter system which is suitable for undergraduate courses is constructed with PASCO's well-known Science Workshop 750 and a rotational motion sensor and light sensor, and the system is presented along with its experimental formulas. After responsivity of this system was checked by a half wave plate, and some repetitive experiments with 30% sucrose solution at 543.8 nm were performed. Comparing the experimental result with two calculated values from CRC data[1] showed that the specific rotation of the sucrose sample could be strongly suggested to be around +76 deg.cc/g.dm and it was an amply acceptable result for most undergraduate level courses.

Temperature Compensation of 8 Channel DWDM Multiplexer Using All Optical fiber Mach-Zehnder Structure (전광섬유형 8채널 DWDM용 광다중화기의 온도보상 특성)

  • Chang, Jin-Hyeon;Jung, Jin-Ho;Kim, Young-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.697-704
    • /
    • 2005
  • In this paper, Passive Temperature Compensation Technology is apply to 8-channel Optical multiplexer with 1000Hz channel spacing. The 8-channel multiplexer is fabricated by connecting three cascaded Mach Zehnder Interferometer(MZI) of optical fiber type, and each interferometer has the wavelength interval of 100GHz, 2000Hz and 4000Hz, respectively. Furthermore, to acquire uniform insertion loss, it is fabricated by using Wavelength Flatten Coupler(WFC) in which the variation of insertion loss is low. $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. In summary, The prototype composed by eight cascaded MZI has an insertion loss of 5.5 dB, the bandwidth of 0.8nm at 0.5 dB point, and channel crosstalk of 25 dB. Furthermore, the loss dependent on polarization is measured as 0.06dB. Consequently, the output wavelength is shifted within 0.05 m when the surrounding temperature varies until $60^{\circ}C$