• Title/Summary/Keyword: 레이저 가열

Search Result 72, Processing Time 0.026 seconds

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

Generation and ignition of micro/nano - aluminum particles using laser (레이저를 이용한 마이크로/나노 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.429-434
    • /
    • 2012
  • Ignition delay of micro/nano aluminum particles is caused by aluminum oxide shell. The method of minimizing this ignition delay is proposed in the study. Generating and heating of particles are processed at the same time. As soon as heated particles are produced, they immediately contact with oxygen. Chemical reaction is induced on the contact surface instead of crystallization of oxide shell. Finally particles are ignited. Aluminum particles are generated by laser ablation on an aluminum plate using Nd:YAG pulse laser. Injected particles are confirmed through visualization of particles using scattering method. $CO_2$ continuous laser supplies heat to aluminum plate and generated particles. Trace of burning particles is observed in the experiment.

  • PDF

Optical Nonlinearity in Laser Heated Si (온도변화에 따른 Si의 비선형 광학적 성질)

  • 이상훈;이범구
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • Optical nonlinearity of laser heated Si with thickness of 160$\mu$m is investigated by pump-probe method. Si is heated by pdsed Nd:YAG laser of $TEM_{00}$-mode with pulse duration of 180$\mu$sec. Temperature change is monitored by observing transmittance change of probe light whose wavelength lies near band gap of Si. It is found that temperature rise is linearly proportional to incident laser intensity and the maximum temperat~re increment is measured to be $16^{\circ}C$ for the maximum incident intensity of 25KW/$\textrm{cm}^2$. From these results, the third order nonlinear susceptibility .d3) at the wavelength of 1.06$\mu$mis estimated to be $6.6\times10^{-5}$esu due to laser heating.

  • PDF

COG(chip-on-glass) Mounting Using a Laser Beam Transmitting a Glass Substrate (유리 기판을 투과하는 레이저 빔을 사용한 COG(chip-on-glass) 마운팅 공정)

  • 이종현;문종태;김원용;김용석
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • Chip-on-glass(COG) mounting of area array electronic packages was attempted by heating the rear surface of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion (i.e. Cr or Ti) and a top coating layer(i.e. Ni or Cu) were healed by the UV laser beam transmitted through the glass substrate. The lather energy absorbed on the pad raised the temperature of a solder ball which is in physical contact with the pad, and formed a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layer. In addition, the microstructures of solder bumps and their mechanical properties were examined.

  • PDF

펄스레이저 증착법의 원리와 응용

  • 이상렬
    • 전기의세계
    • /
    • v.45 no.5
    • /
    • pp.17-22
    • /
    • 1996
  • PLD 장치는 진공 또는 반응가스가 채워진 챔버안에 다층 박막을 증착시킬 수 있는 여러개의 타겟홀더와 기판홀더가 존재하고 물질을 기화시켜 박막을 증착시키기 위해 외부 에너지원으로 고출력 레이저가 사용되며, 일련의 광학장치들은 타겟표면에 레이저 빔을 접속시키고 주사하기 위해 사용된다. 타겟표면에 접속된 레이저 빔은 타겟표면 물질을 플라즈마 (또는 플룸) 상태로 만들고 이 플룸이 결정화에 알맞는 온도로 가열된 기판위에서 결정구조를 가진 박막을 형성한다. 진공장치와 기화에너지원의 분리는 PLD 시스템을 유연하게 해서 내부적으로 기화에너지원의 사용에 의한 제한없이 다른 동작 모드에 쉽게 적용할 수 있다.

  • PDF

Anomalous Dispersion in Cs Atomic Vapor Cell (세슘원자셀에서의 비정상 분산)

  • 강훈수;김재필;오차환;송석호;김필수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.254-255
    • /
    • 2001
  • 매질의 공진주파수 근처에서는 주파수가 커짐에 따라 매질의 굴절률이 감소하는 비정상 분산 특성을 나타낸다. 본 실험에서는 세슘원자의 비정상 분산 특성을 실험적으로 관측할 수 있는 방법을 연구하였다. 가열된 세슘원자셀(16$0^{\circ}C$)에 CS D$_2$ 전이선에 공진되는 레이저빔을 입사하여 레이저의 주파수에 따른 레이저빔의 굴절각도를 측정하였다(그림1) 레이저빔의 굴절각의 변화를 용이하게 측정하기 위해 원자셀 벽에 굴절률이 1.5 인 프리즘을 장착하고 원자빔을 전반사의 임계각보다 조금 작은 각도로 입사하여 투과광의 굴절각을 측정하였다. (중략)

  • PDF

Numerical analysis of induction heating for the application of line heating (선상 가열을 위한 고주파 유도 가열의 수치 해석)

  • Jung-Gyu Kang;Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.110-121
    • /
    • 2000
  • Gas heating, high frequency induction heating and laser heating can be used as the heat-source of line heating. Most of shipyards have been using the gas heating method for line heating. It is difficult to control the residual deformation of gas heating. High frequency induction heating is more feasible for the automation of line heating rather than the gas heating method since it is easy to control the magnitude of heat input. In this study, a numerical model of high frequency induction heating process is proposed for the application of the line heating. The simulation process of the induction heating is composed of the electromagnetic analysis, the heat transfer analysis, and the thermal deformation analysis.

  • PDF

Measurement of soot concentration in flames using laser-induced incandescence method (레이저 가열 측정법을 이용한 화염 내 매연 농도 측정)

  • Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Laser induced incandescence, LII, recently developed technique for measuring soot concentration in flames, can overcome most of limitations of conventional laser extinction measurement. In this study, experiments were performed to investigate the effect of laser intensity, detection wavelength, and also laser beam quality on both LII signal at a particular position and peak-to-centerline LII signal ratio. The results of LII signal with increasing laser intensity shows its near-independence of laser intensity once threshold level of laser intensity has been reached. However, this near-independence depends on laser beam quality and the incident optical setup. The peak-to-centerline LII signal ratio slowly but continuously increases with laser power. This fact is due to the dependence of LII signal on particle mean diameter. LII signal is attenuated during it passes through the flame containing soot particles. The attenuation rate is inversely proportional to detection wavelength. In this study, LII signal at 680 nm band is 10% greater than the signal at 400 nm band.

  • PDF