• 제목/요약/키워드: 레이저표면변태경화

검색결과 9건 처리시간 0.023초

레이저를 이용한 표면공학

  • 안인섭
    • 한국표면공학회지
    • /
    • 제19권1호
    • /
    • pp.20-29
    • /
    • 1986
  • 이 보고서는 재료의 표면처리에 레이저의 역할이 증가하고 있음을 설명하고 생산현장과 실험실환경에서의 그것의 금속학적인 응용을 조사한다. 변태경화, 표면합금화와 크래딩에 특히 관심을 두었으나, 아직 개발단계에 있는 표면용융, 입자분사와 증착과 같은 기술에 관해서도 언급한다.

  • PDF

다이오드 레이저를 이용한 탄소강 환봉의 표면변태 경화특성 (Characteristics of Surface Transformation Hardening for Rod-shaped Carbon Steels by Diode Laser)

  • 김종도;강운주;이수진;윤희종;이제훈
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.7-12
    • /
    • 2008
  • Laser Transformation Hardening(LTH) is one branch of the laser surface modification processes. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power density comparatively. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen, the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

  • PDF

고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화 (Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser)

  • 김종도;길병래;강운주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (II) - 빔 프로파일 차이에 따른 레이저 표면변태경화 특성 비교 - (Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (II) - Comparison of Characteristics on Laser Surface Transformation Hardening as a Difference on Beam Profile -)

  • 김종도;강운주
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.85-91
    • /
    • 2007
  • The conventional study on the laser surface transformation hardening has been carried out with a beam of the specified shape and uniform power-intensity distribution in order to ensure the uniformity of the hardening depth. Two types of beams - the circular gaussian beam and rectangular beam of the uniform power-intensity distribution were used in this study. we were supposed to optimize the process parameters and to compare the hardening results with two optics respectively. As a result, the hardness distribution of the hardened zone was similar in both cases and the hardened phase by the rectangular beam was denser than that by the circular gaussian beam.

레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구 (A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening)

  • Kim, J.W.
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

레이저 표면경화 공정에서 경화층깊이의 실시간 측정을 위한 실험적 연구 (An experimental study on the in-process measurement of case depth for LASER surface hardening process)

  • Woo, H.G.;Park, Y.J.;Han, Y.H.
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.66-75
    • /
    • 1993
  • This paper proposes a monitoring method for nondestructive and in-process measurement of the case depth in LASER surface heat treatment process. The method is essentially an eddy-current method, and measures sensing coil's electrical impedance which varies with the changes of the material microstructure due to hardening. To investigate te validity of the proposed method a series of experiments were performed for various hardning depths. The results show that the relationship between the eddy- current sensor output and the changes in case depth is almost linear. This indicates that the eddy-current measuring method can be used as one of the possible monitoring method for mesauring the hardened depth in LASER heat treatment processes.

  • PDF

탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 - (Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution -)

  • 김종도;강운주
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구 (Investigation of Regraphitization during Cam Shaft Remelting)

  • 오영근;김광수;고진현
    • 한국재료학회지
    • /
    • 제8권7호
    • /
    • pp.648-652
    • /
    • 1998
  • 자동차용 캠 샤프트의 표면경화를 위해 TiG 용접공정에 의한 재용융처리가 실시되었다. 재용융처리는 캠축에 평행한 방향으로 행하여졌다. 캠 샤프트 소재의 조직은 편상의 흑연과 퍼얼라이트의 회주철 조직으로 구성되어 있으나 재용융 처리후 미세한 퍼얼라이트 및 세멘타이트와 구상 오스테나이트의 레데브라이트 조직으로 변화하였다. 캠 샤프트 모재의경도는 HRc 25~28에서 재용융 처리후에는 HRg 53~55정도로 증가하였다. 다층 용융 처리시 비드가 겹치는 경계에서 검은띠가 관찰되었는데 이 검은띠는 흑연으로 판명되었다. 이 검은띠는 전층의 레데브라이트 조직이 변태된 것으로 주로 세멘타이트와 기지조직의 경계에서 생성되었다. 고밀도 에너지인 레이저 용융처리시에도 재흑연화 현상은 TIG의 경우처럼 관찰되었다. 재흑연화 현상의 확인을 위해서 Gleeble 1500을 이용하여 $1100^{\circ}C$$1000^{\circ}C$에서 0.5, 1, 3, 5 및 10초동안 유지한 모의실험을 하였다. $1000^{\circ}C$에서 0.5초 유지했을 때도 흑연이 발견된 것으로 보아 재흑연화 현상은 어떠한 재용융 처리 공정을 사용하더라도 피할 수 없는 현상임을 확인할 수 있다.

  • PDF