Journal of the Korean Society of Clothing and Textiles
/
v.31
no.12
/
pp.1784-1792
/
2007
This study set out to identify the problems with hat labels and to search for improvement measures by examining and analyzing consumers' practice of managing their hats. It also intended to provide accurate and enough information about how to keep and wash hats and thus help consumers use their hats for a long period. In an attempt to investigate how consumers wash and manage their hats, a survey was carried out to 395 individuals in their twenties and over who owned hats living in urban areas including Seoul, and were quota sampled according to age and gender. The survey period is March to April 2007. The collected data were statistically treated with the SPSS 12.0 program in terms of frequency, percentage, mean, standard error, cross tabulation, t-test, and one-way ANOVA. The findings were as followed. First, the respondents were in the average level of perceiving and practicing the washing methods of their hats. The female respondents who had more experiences with laundering than the males knew and practiced the washing methods for hats better than males. Second, compared to other clothing items, hat wearers were more likely to pay careful attention to their hats by putting their hats in a laundry net and applying a laundry detergent for wool fabrics when using a washing machine or washing their hats with their own hands. And third, most of the hat wearers were aware of the importance of hat labels and showed a lower level of trust in them than other clothing items. The suppliers need to offer accurate and practical labels in order to regain the consumers' trust. Many consumers had some difficulties figuring out the size system of hats. In particular, the male consumers had a low level of perception of labels, which implies that there should be specific efforts to educate them about general labels.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.7
/
pp.816-822
/
2016
Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.
Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
Proceedings of the KAIS Fall Conference
/
2007.05a
/
pp.181-184
/
2007
자연영상에 포함된 텍스트는 많은 중요한 정보를 포함하고 있으므로 자연영상에서 텍스트 정보를 검출하는 연구가 활발히 진행되고 있다. 본 논문에서는 문자 영역의 구조적인 특정을 배열문법으로 정의한 적응적 문자-에지 맵을 제안하여 텍스트 영역을 검출한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지를 레이블링하고 그 영역의 문자구조 특징을 분석하기 위해서 적응적 문자-에지 맵을 분석한다. 적응적 문자-에지 랩의 분포 상태를 분석함으로서 텍스트 후보 영역을 검출하고, 텍스트 영역의 에지 히스토그램 프로파일을 분석함으로서 텍스트 후보 영역에 대한 검증을 수행하여 최종적인 텍스트 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 기울어진 텍스트와 다양한 크기의 텍스트 구성된 자연영상에서 텍스트 영역을 효과적으로 검출하였다.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.265-271
/
1995
한국전자통신연구소의 음성 데이터베이스 구축 현황을 기술한다. 현재 한국전자통신연구소에서는 음성인식 연구를 위해 단어음성, 정형 문장 음성 등의 데이터베이스를 구축, 보유하고 있다. 음성인식용 데이터베이스는 정해진 단어, 분장을 20명 내지 100명이 발성한 것으로, 일부는 음소 단위까지 레이블링이 되어 있다. 또 음성합성 연구를 위해 합성단위 및 운율데이타베이스를 가지고 있는데 이는 한 명 혹은 남녀 각각 3명이 발성한 것으로, 일부는 피치 등이 수록되어 있다. 문장 데이터베이스는 언어 정보처리를 위해 교재, 문학, 경제, 과학 분야의 문장을 총 480만 어절 가지고 있으며, 이 중 일부에 품사 정보를 추가하였다. 한국전자통신연구소는 국내 음성 연구의 발전에 기여하고자 음성 연구의 기반 자료가 되는 음성 데이터베이스를 국내 대학 및 산업체에 배포하고 있다 음성 데이터베이스는 음성 연구의 기반이 되는 자료임에도 불구하고 많은 비용과 노력이 들어 일반 대학에서는 쉽게 만들 수 없었다. 이에 ETRI는 한국통신이 출연한 "자동통역 요소기술개발" 과제으 LQNTKSANF인 여러 종류의 음성 데이터베이스와 관련 프로그램을 공급하여 국내 음성 연구의 기반 확립에 기여하고자 한다. 기여하고자 한다.
Kim, Nam Kyun;Park, Chang-Soo;Kim, Hong Kook;Hur, Jin Ook;Lim, Jeong Eun
The Journal of the Acoustical Society of Korea
/
v.40
no.5
/
pp.479-487
/
2021
In this paper, we propose an Sound Event Detection (SED) model using self-training based on a noisy student model. The proposed SED model consists of two stages. In the first stage, a mean-teacher model based on an Residual Convolutional Recurrent Neural Network (RCRNN) is constructed to provide target labels regarding weakly labeled or unlabeled data. In the second stage, a self-training-based noisy student model is constructed by applying different noise types. That is, feature noises, such as time-frequency shift, mixup, SpecAugment, and dropout-based model noise are used here. In addition, a semi-supervised loss function is applied to train the noisy student model, which acts as label noise injection. The performance of the proposed SED model is evaluated on the validation set of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge Task 4. The experiments show that the single model and ensemble model of the proposed SED based on the noisy student model improve F1-score by 4.6 % and 3.4 % compared to the top-ranked model in DCASE 2020 challenge Task 4, respectively.
Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
Journal of KIISE:Computing Practices and Letters
/
v.16
no.10
/
pp.1010-1014
/
2010
Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.
This experiment was conducted to evaluate effects of various periods of rye silage feeding on the growth performance, blood characteristics, and carcass quality of finishing pigs. A total of sixteen [($Landrace{\times}Yorkshire{\times}Duroc$)] pigs (90.26 kg in average initial body weight) were tested in individual cages for a 30 day period. Dietary treatments included 1) CON (basal diet), 2) S10 (basal diet for 20 days and 3% rye silage for 10 days) 3) S20 (basal diet for 10 days and 3% rye silage for 20 days) and 4) S30 (3% rye silage for 30 days). There were no significant differences in the ADG and gain/feed ratio among the treatments(p>0.05), however the ADFI was higher in pigs fed the CON diet than with pigs fed diets with rye silage (p<0.05). The DM digestibility was higher with the S20 diet than with the S30 diet (p<0.05). With regard to blood characteristics, pigs fed rye silage had a significantly reduced cortisol concentration compared to pigs fed the CON diet (p<0.05). The backfat thickness was higher with the CON diet than with the S20 or S30 diets (p<0.05). Regarding the fatty acid contents of the leans, the C18:0 and total SFA were significantly higher with the CON diet than with the other diets (p<0.05). However, the C18:1n9, total MUFA and UFA/SFA levels were significantly lower with the CON diet than the other diets (p<0.05). Regarding the fatty acid contents of fat, the levels of C18:1n9 and MUFA were similar with the S20 and S30 diets, however, these levels were higher than with the CON or S10 diets (p<0.05). In conclusion, feed intake and DM digestibility were affected by rye silage, and the cortisol concentration, backfat thickness and fatty acid composition of pork were positively affected by feeding pigs rye silage.
This paper introduces and implements a Sound Event Detection (SED) system based on weakly-supervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by "strongly labeled data" including the event class and activations, "weakly labeled data" including the event class, and "unlabeled data" without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.
Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
Proceedings of the KAIS Fall Conference
/
2007.11a
/
pp.262-265
/
2007
이미지 데이터베이스 시스템에서 이미지에 포함된 문자정보를 기반으로 검색어를 사용한다면 검색의 정확도 높일 수 있다. 이미지에서 문자정보를 추출을 위한 전단계로서 문자열 영역 검출이 필수적인 과제가 된다. 그러므로 본 논문에서는 문자의 크기와 문자열의 방향에 적응적인 문자-에지 맵을 이용한 문자열 영역 검출 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지로 레이블 이미지를 얻고, 그 영역의 문자구조 특징을 분석하기 위해서 배열문법으로 문자-에지 맵에 적응적으로 분석한다. 문자-에지 맵의 분석결과로서 문자열 후보 영역을 얻고, 문자열 영역의 구조적인 특징을 이용하여 문자열 후보 영역을 검증함으로서 최종적인 문자열 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 자연영상에서 기울어진 문자열과 다양한 크기의 문자를 갖는 문자열 영역을 효과적으로 검출하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.1
/
pp.251-256
/
2021
This study analyzed the most frequently used navigation cases in a desktop environment. As a result of the research, GNB induces users' search as the top element of the search structure and can place color, text, icon, and image elements. LNB could be classified in the form of a dropdown, flyout, dropline and mega menu. In this study, the navigation structure of Interpark and Interpark among open markets used by users was analyzed. G-Market's GNB has a two-tier structure with color, text, image, and icon elements, and Interpark has a three-tiered horizontal label. Interpark's GNB drew attention by placing a badge on the seasonal label, which is a temporary content section, unlike G-market. It can be seen that the LNBs of both shopping malls have flyout menus that protrude when you mouse over the category menu arranged in a vertical text form under the logo placed on the left. The flyout menu has a complex structure consisting of the layout of the mega menu. This study is meaningful in revealing user experience elements by analyzing the GNB and LNB of shopping malls these days where internet shopping is increasing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.