• Title/Summary/Keyword: 레이블 임베딩

Search Result 15, Processing Time 0.02 seconds

Fine-grained Named Entity Recognition using Hierarchical Label Embedding (계층적 레이블 임베딩을 이용한 세부 분류 개체명 인식)

  • Kim, Hong-Jin;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.251-256
    • /
    • 2021
  • 개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.

  • PDF

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • In this paper, we propose a new stacking ensemble framework for deep learning models which reflects the distribution of label embeddings. Our ensemble framework consists of two phases: training the baseline deep learning classifier, and training the sub-classifiers based on the clustering results of label embeddings. Our framework aims to divide a multi-class classification problem into small sub-problems based on the clustering results. The clustering is conducted on the label embeddings obtained from the weight of the last layer of the baseline classifier. After clustering, sub-classifiers are constructed to classify the sub-classes in each cluster. From the experimental results, we found that the label embeddings well reflect the relationships between classification labels, and our ensemble framework can improve the classification performance on a CIFAR 100 dataset.

Claim-Evidence Pair Extraction Model using Hierarchical Label Embedding (계층적 레이블 임베딩을 이용한 주장-증거 쌍 추출 모델)

  • Yujin Sim;Damrin Kim;Tae-il Kim;Sung-won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.474-478
    • /
    • 2023
  • 논증 마이닝이란 비정형의 텍스트 데이터에서 논증 구조와 그 요소들을 식별, 분석, 추출하는 자연어 처리의 한 분야다. 논증 마이닝의 하위 작업인 주장-증거 쌍 추출은 주어진 문서에서 자동으로 주장과 증거 쌍을 추출하는 작업이다. 본 논문에서는 효과적인 주장-증거 쌍 추출을 위해, 문서 단위의 문맥 정보를 이용하고 주장과 증거 간의 종속성을 반영하기 위한 계층적 LAN 방법을 제안한다. 실험을 통해 서로의 정보를 활용하는 종속적인 구조가 독립적인 구조보다 우수함을 입증하였으며, 최종 제안 모델은 Macro F1을 기준으로 13.5%의 성능 향상을 보였다.

  • PDF

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.

A Study on the Deduction of Social Issues Applying Word Embedding: With an Empasis on News Articles related to the Disables (단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로)

  • Choi, Garam;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.1
    • /
    • pp.231-250
    • /
    • 2018
  • In this paper, we propose a new methodology for extracting and formalizing subjective topics at a specific time using a set of keywords extracted automatically from online news articles. To do this, we first extracted a set of keywords by applying TF-IDF methods selected by a series of comparative experiments on various statistical weighting schemes that can measure the importance of individual words in a large set of texts. In order to effectively calculate the semantic relation between extracted keywords, a set of word embedding vectors was constructed by using about 1,000,000 news articles collected separately. Individual keywords extracted were quantified in the form of numerical vectors and clustered by K-means algorithm. As a result of qualitative in-depth analysis of each keyword cluster finally obtained, we witnessed that most of the clusters were evaluated as appropriate topics with sufficient semantic concentration for us to easily assign labels to them.

Entity Matching Method Using Semantic Similarity and Graph Convolutional Network Techniques (의미적 유사성과 그래프 컨볼루션 네트워크 기법을 활용한 엔티티 매칭 방법)

  • Duan, Hongzhou;Lee, Yongju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.801-808
    • /
    • 2022
  • Research on how to embed knowledge in large-scale Linked Data and apply neural network models for entity matching is relatively scarce. The most fundamental problem with this is that different labels lead to lexical heterogeneity. In this paper, we propose an extended GCN (Graph Convolutional Network) model that combines re-align structure to solve this lexical heterogeneity problem. The proposed model improved the performance by 53% and 40%, respectively, compared to the existing embedded-based MTransE and BootEA models, and improved the performance by 5.1% compared to the GCN-based RDGCN model.

Korean Named Entity Recognition using Joint Learning with Language Model (언어 모델 다중 학습을 이용한 한국어 개체명 인식)

  • Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF

Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space (전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론)

  • Kim, Junwoo;Yoon, Byungho;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.127-146
    • /
    • 2022
  • Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.

Korean Named Entity Recognition using Joint Learning with Language Model (언어 모델 다중 학습을 이용한 한국어 개체명 인식)

  • Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF