• Title/Summary/Keyword: 레이더 강우자료

Search Result 294, Processing Time 0.041 seconds

Runoff Analysis using Radar Rainfall and Distributed Model (레이더 추정 강우와 분포형 모형을 이용한 유출 모의)

  • Kim, Geon Woo;Ahn, Jaehyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.214-217
    • /
    • 2018
  • 본 연구에서는 레이더의 수평반사도를 이용하여 강우를 추정하였고, 레이더 추정 강우자료에 의한 유역평균 강우량과 지상 우량계의 유역평균 강우량을 비교하였다. 또한 추정한 레이더 강우와 지상 강우를 이용하여 강우를 보정하였으며, 수문학적 활용성을 확인하기 위해 분포형 모형인 $Vflo^{TM}$을 이용하여 유출을 모의하였다. 강우량 분석결과, 보정 전의 레이더 추정 강우는 지상 강우와 많은 차이를 나타냈으며, 지상 강우를 통해 보정한 레이더 추정 강우는 지상 강우와 유사한 결과를 나타내었다. 유출모의에서도 보정한 레이더 추정 강우의 첨두유량과 총유출량이 관측유량과 비교적 근사한 값을 보였다.

  • PDF

Estimation of Storm-centered Areal Reduction Factors by Durations and Return Periods Using Radar Rainfall (지속시간 및 재현기간에 따른 레이더 강우 호우중심형 ARF의 산정)

  • Kim, Eunji;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.163-163
    • /
    • 2017
  • 설계홍수량은 수공구조물의 규모를 결정하는데 이용되며, 국내에서는 설계홍수량을 산정하기 위하여 지속시간과 재현기간에 따라 면적강우량을 추정한다. 지점강우량은 제한된 지역을 대표하는 값이므로 지점강우량을 기준면적에 대한 면적강우량으로 환산하기 위하여 면적우량환산계수(ARF, Areal Reduction Factor)를 적용한다. ARF를 산정하는 방법은 과거 관측자료를 활용하여 산정하는 경험적 방법(empirical method)이 주를 이루고 있으며, 경험적 방법은 크게 면적고정형(Fixedarea) 방법과 호우중심형(Storm-centered) 방법으로 분류된다. 면적고정형 방법은 국내 하천설계 기준에서 적용하고 있는 방법으로 면적강우 및 지점강우의 연 최대치를 독립적으로 빈도 해석하여 ARF를 산정하므로 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형 방법은 각각의 강우사상을 분석 대상 유역 중심에 공간 전이시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우를 활용하면 실제 강우사상의 공간분포 특성을 반영한 현실적인 ARF 산정이 가능하다. 본 연구에서는 국내 기상청에서 제공하는 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하여 지속시간 1, 3, 6, 12, 24시간에 대한 호우중심형 ARF를 산정하였고, 면적강우 산정 시, 강우사상의 면적을 원형 또는 타원형으로 선정하여 강우의 형상 및 방향성을 고려하였다. 또한 레이더 강우의 중심강우를 지상강우 자료로 산정된 확률강우량 기준으로 분류하여 재현기간별 호우중심형 ARF를 산정하였으며, 이를 통해 기준면적, 지속시간, 재현기간에 따른 ARF의 특성을 분석하고자 하였다.

  • PDF

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1201-1205
    • /
    • 2010
  • 최근 몇 년간 기후변화에 의해 기상이변이 발생하고 있으며 이에 따른 집중호우로 인한 홍수피해가 심각한 수준으로 발생하고 있다. 이에 수문기상학적 요소와 특성인자들의 정확한 상호 연관성의 규명과 공간적 변동성 해석은 강우-유출 모형에서 발생하는 불확실성을 감소시키는데 중요한 요소라고 할 수 있다. 이에 본 연구에서는 레이더 강우 격자 해상도와 지형인자 격자 해상도에 따라 강우-유출모형이 어떻게 반응하는지 분석하였다. 본 연구에서는 가-분포 강우-유출 모형인 ModClark 모형을 이용하여 강원도 인제군의 내린천 유역을 대상으로 광덕산 레이더자료를 이용하였다. ModClak 모형 구성을 위한 GIS 지형공간 자료는 30m, 150m, 250m, 350m 격자크기의 DEM을 사용하였으며, 2006년 7월 14일부터 7월 17일까지의 관측레이더 강우자료를 500m, 1km, 2km, 5km, 10km 사용하여 유출모의를 실시하고, 각각의 격자해상도에 따른 모의 결과를 비교하기 위해 유출수문곡선을 작성하고 유출량 변화를 모의하였다. 분석 결과 첨두유량 및 유출체적에 대해서는 DEM 30m~150m, Grid 500m~2,000m 크기의 격자일 때 가장 최적의 유출 모의를 한 것으로 분석되었으며, 통계적 분석에 의한 분석결과에서는 모든 DEM 격자는 Grid 500m인 경우, 모든 Grid 격자는 DEM 30m인 경우에 모형의 적합성이 높은 것으로 나타났고, 민감도 산정 결과 지수 등급이 높은 DEM이 분포형 모형의 결과 값에 큰 영향을 주는 것으로 분석되었다.

  • PDF

Analysis of Rainfall Intermittency and Log-normality on the Kriging: Focused on Simple Kriging (강우의 간헐성과 비정규성이 크리깅에 미치는 영향 분석: 단순크리깅을 중심으로)

  • Ro, Yonghun;Ku, Jung Mo;Kang, Minseok;Kim, Gildo;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.221-221
    • /
    • 2016
  • 최근 레이더를 이용한 정량적 강수추정과 관련된 연구가 활발히 수행되고 있으며, 우량계와 레이더 자료의 합성과 관련된 연구가 수행되고 있다. 이는 정도 높은 우량계 자료의 장점과 강우의 공간분포를 파악할 수 있는 레이더 자료의 장점을 결합하여 고품질의 자료를 생산할 수 있기 때문이다. 자료합성과 관련된 다양한 기법이 도입되었고, 크리깅의 한 종류인 코크리깅이 널리 사용되고 있다. 크리깅은 값을 알고 있는 지점의 자료를 가중선형 조합하여 미지점의 값을 예측하는 경험적 방법으로 연속적이며 정규분포를 따르는 자료에 대해 유효하다. 그러나 강우자료는 강한 양의 왜곡도를 나타나고 간헐성도 강하게 나타나 크리깅의 이러한 조건을 만족시키지 못한다. 이로 인해 강우 자료에 크리깅을 수행할 경우 예측 값이 왜곡되거나 편향될 가능성이 크다. 이에 본 연구에서는 강우의 간헐성과 정규분포를 따르지 않는 특성을 고려하여 단순크리깅의 적용방법을 개선하였다. 단순크리깅은 가장 간단한 크리깅 기법으로 설명이 쉽고 적용사례를 비교하기 유리하여 이를 개선하면 다른 복잡한 크리깅 기법에도 쉽게 적용이 가능한 이점이 있다. 본 연구에서는 모의 자료와 레이더 강우 자료를 이용하여 단순크리깅을 수행하였고, 그 결과를 비교하여 자료의 간헐성과 비정규적 특성이 예측 값에 미치는 영향을 분석하였다.

  • PDF

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar II. 2-D Quantitative Rainfall Estimation Using Cokriging (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 II. Cokriging을 이용한 2차원 정량강우 산정)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Gwang-Seob;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.335-346
    • /
    • 2006
  • Among various input data to hydrologic models, rainfall measurements arguably have the most critical influence on the performance of hydrologic model. Traditionally, hydrologic models have relied on point gauge measurements to provide the area-averaged rainfall information. However, rainfall estimates from gauges become inadequate due to their poor representation of areal rainfall, especially in situations with sparse gauge network. Alternatively, radar that covers much larger areas has become an attractive instrument for providing area- averaged precipitation information. Despite of the limitation of the QPE(Quantitative Precipitation Estimation) using radar, we can get the better information of spatial variability of rainfall fields. Also, rain-gauges give us the better quantitative information of rainfall field. Therefore, in this study, we developed improved methodologies tu estimate rainfall fields using an ordinary cokriging technique which optimally merges radar reflectivity data into rain-gauges data.

Assessment of flood runoff using radar rainfall and distributed model (레이더 강우 자료와 분포형 모형을 이용한 홍수 유출량 산정)

  • Kim, Byung-Sik;Hong, Jun-Bum;Kim, Won;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1787
    • /
    • 2007
  • In this paper we applied radar rainfall for assessment that radar can be used for flood forecasting. The radar data observed at Imjin-River radar site was adjusted using conditional merging method to estimate simulated runoff in Anseon-cheon basin. Also we use two dimensional physical and grid based model call $Vflo^{TM}$. As a result we could find simulated hydrologic curve shows good fitting with observed hydrologic curve even parameters of the model were not calibrated. If we calibrate the parameters, we can expect better hydrologic curve. And radar rainfall can be used for water resources fields and flood forecasting in Korea.

  • PDF

Verification of initial field of very short-term radar rainfall forecasts using advanced system: A case study of Typhoon CHABA in 2016 (초단기 레이더 강우예측 초기장 고도화 시스템 검증: 2016년 태풍 차바 사례를 중심으로)

  • Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.100-100
    • /
    • 2018
  • 본 연구에서는 집중호우에 대한 레이더기반 초단기 강우예측 시스템의 정확도를 향상시키기 위해 초기장 개선 연구를 수행하였다. 집중호우에 적합한 강우를 추정하기 위해 층운형, 대류형, 열대형의 Z-R관계식과 반사도 조건에 따라 층운형과 적운형을 구분하여 Z-R 관계식을 적용하였으며, 이를 초단기 강우예측 시스템의 초기장으로 활용하였다. 또한 2016년 10월 5일 태풍 차바(Chaba)에 의한 집중호우 사례에 대해 지상관측 강우자료와 레이더 추정 및 예측 강우자료와의 비교를 통해 정확도를 정성적 정량적으로 평가하였다. 레이더 강우추정에 대한 분석 결과, 복합형 타입의 Z-R 관계식의 상관계수와 평균제곱근오차가 비슬산레이더의 경우 각각 0.8207, 9.22 mm/hr, 면봉산 레이더의 경우 각각 0.8001, 10.53 mm/hr로 가장 좋은 성능을 보였다. 강우 예측에 대한 분석 결과, 집중호우 사례에 대해 강우강도 공간분포 및 이동 패턴은 평균적으로 잘 모의하였으며, 초단기 강우예측 결과의 평균적으로 POD는 0.97이상, FAR는 0.21 이하로 다소 정확하게 예측하는 것으로 분석되었다. 정량적 평가 결과, 비슬산 레이더의 경우 상관계수가 예측시간 60분까지 0.545이상, 면봉산 레이더의 경우 0.379 이상으로 비교적 좋은 상관성을 보였으며, Z-R관계식 유형에 따른 차이는 작은 것으로 확인되었다. 평균제곱근오차의 경우 열대형과 복합형의 Z-R관계식이 높은 정확도를 가지는 것으로 확인되었다. 본 연구 결과, 초기장 정확도의 개선을 통한 레이더 기반 초단기 강우예측 모형의 정확도 개선 가능성을 확인할 수 있었으며, 향후 지속적인 사례연구 및 검증을 통하여 강우추정 및 강우예측 알고리즘 개선의 노력이 필요하다.

  • PDF

Analysis on Rainfall characteristics in Mountainous River Basin (산지 하천유역 강우특성 분석)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Cheon-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.886-886
    • /
    • 2012
  • 우리나라 하천의 대부분은 산지에서 발원하며 전 국토의 약 70%가 산지하천 유역에 포함된다. 최근 기후변화로 인해 여름철 집중호우가 증가하고 있는 상황에서 강우의 예측이 어렵고 경사가 급한 산지하천 유역의 피해가 가중되고 있으며 산지하천의 강우를 정량적으로 파악하고 상시 모니터링 할 수 있는 체계의 구축이 요구된다. 한국건설기술연구원(2011)에서는 산지 하천유역 모니터링 시스템을 구축하여 재해위험지역의 현장관측시스템과 레이더강우를 기반으로 하는 강우유출 시스템을 연계운영하고 있다. 본 연구에서는 하천유역 모니터링 시스템을 통해 수집되고 있는 강원도 인제군 가리산리의 관측강우량을 이용해 산지하천유역의 강우특성을 분석하고 산지유역의 강우추정을 위한 레이더 자료의 활용성을 제시하였다. 대상유역인 가리산천 유역을 대상으로 작성된 티센 면적평균 강우량과 기상레이더를 이용한 레이더 강우량에서 가리산리 관측시스템 위치의 픽셀을 추출한 후 각각의 방법으로 추정된 강우량이 관측값과 어떤 차이를 갖고 있는가를 비교하였다. 또한, 모니터링 사이트 주위의 AWS를 이용해 레이더 강우를 보정한 후 동일한 방법으로 관측강우 위치의 셀 강우를 비교하여 레이더 강우의 보정 효과를 제시하였다. 연구결과 600m 이상의 고지대에 위치한 현장관측시스템의 강우는 고도가 낮은 인근 강우관측소와 큰 차이를 나타냈으며 티센면적 평균 강우의 경우 산지하천의 강우특성을 반영하기에 한계가 있는 것으로 판단되었다. 레이더 강우 역시 실제 관측강우량에 비해 과소추정되며 대상유역 주변의 AWS를 이용해 보정한 레이더 보정강우를 활용시 현장관측시스템의 강우가 가장 유사한 결과가 도출되었다. 본 연구를 통해 산지하천 유역의 강우특성을 파악하기 위해서는 지상관측소와 레이더 자료를 병행하여 활용하는 것이 필요하며 산지하천유역의 강우를 효과적으로 모니터링 하기 위해서는 고도에 따른 관측망의 구성이 필요할 것으로 판단되었다.

  • PDF

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.

Storm-Centered Areal Reduction Factors by Durations and Return Periods Using Rain Fields with Composite of Radar and Gauge Rainfall (레이더 및 지상 합성강우장에 대한 지속시간-재현기간별 호우중심형 ARF)

  • Kim, Eunji;Hyun, Sukhoon;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.285-285
    • /
    • 2016
  • 설계홍수량 산정 시, 지점강우량을 대상 유역 내 면적강우량으로 환산하기 위해 면적우량환산계수(ARF, Areal Reduction Factors)를 적용한다. ARF를 산정하는 방법은 크게 면적고정형법(Fixed-Area Method)과 호우중심형법(Storm-Centered Method)로 나뉜다. 면적고정형법은 현재 국내 하천설계기준에서 활용하고 있는 방법이지만, 공간적 관측밀도의 제약으로 정확한 ARF 산정에는 한계가 있다. 또한 연 최대치계열의 독립적인 빈도해석을 통해 지점강우량과 면적강우량을 산정하므로 동시간(Synchronized)에 발생하는 강우 사상이라고 볼 수 없기 때문에 산정된 ARF는 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형법은 각각의 강우사상을 분석 대상 유역 중심에 공간전이 시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우 자료를 활용하면 현실적 ARF값의 산정이 가능해진다. 레이더 강우는 기상청에서 제공하는 2007-2012년 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하였으며, 대상지역으로는 한강 권역을 선정하였다. 그러나 기상청 레이더강우 자료의 경우 가용기간이 아직까지 충분하지 않아 다양한 빈도의 강우사상을 확보하는데 한계가 있어, 보조적으로 한강 권역의 지상강우 관측 자료를 수집하여 높은 재현기간의 강우사상이 부족한 문제점을 해결하고자 하였다. 산정된 레이더 및 지상강우 호우중심형 ARF는 통계적 분석을 통해 비초과확률 90%, 95%의 값을 추출하였으며, 지속시간 1시간, 3시간, 6시간, 12시간, 24시간과 재현기간 0~10년, 10~20년, 20~50년, 50~80년, 80~100년에 대한 호우중심형 ARF 회귀상수를 제시하였다. 비초과확률 95%에서 기존 국토해양부(2011)에서 제시된 ARF와 호우중심형 ARF는 대체로 유사한 경향을 보이고 있었으나, 지속시간이 비교적 긴 12시간, 24시간에서는 호우중심형이 기존 ARF보다 다소 작게 산정되는 패턴을 보이고 있어 설계적용 시 유의해야 할 것으로 사료된다.

  • PDF