• 제목/요약/키워드: 레비확률과정

검색결과 5건 처리시간 0.015초

Variance Gamma 과정을 이용한 옵션 가격의 결정 연구 (A Study of Option Pricing Using Variance Gamma Process)

  • 이현의;송성주
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.55-66
    • /
    • 2012
  • 블랙-숄즈 모형이 실제 기초자산의 움직임을 반영하지 못한다는 사실이 실증연구에 의하여 밝혀진 이후 기초자산의 움직임을 레비확률과정을 이용하여 모형화한 옵션가격결정 모형들이 그 대안 중 하나로 연구되어 왔다. 본 논문에서는 블랙-숄즈 모형의 대안으로 제시된 레비모형 중 Variance Gamma 모형이 국내 주식시장에서의 기초자산의 움직임을 블랙-숄즈 모형보다 충실히 재현해내는지 알아보고자 한다. 이를 위하여 Madan 등 (1998)의 연구에서와 같이 로그수익률의 확률밀도함수와 옵션 가격 결정식을 바탕으로 KOSPI 200자료를 이용하여 모수를 추정하고 우도비 검정을 실시하였다. 또한, 옵션 가격을 추정한 후 모형 간의 비교를 위하여 다양한 통계량을 계산하고, 회귀분석을 통하여 변동성 스마일 현상이 교정되는지를 살펴보았다. 연구결과로부터 Variance Gamma 모형 하에서 추정된 옵션 가격이 블랙-숄즈 모형 하에서 추정된 그것보다 더 시장가격과 가까우나, 이 모형도 변동성 스마일 현상을 해결해주지는 못함을 확인할 수 있었다.

보험위험 확률모형에서의 파산확률 (Ruin Probability on Insurance Risk Models)

  • 박현숙;최정규
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.575-586
    • /
    • 2011
  • 본 연구는 보험산업에서 관심을 갖는 파산확률의 근사적 추이를 살펴보기 위하여 크레임의 분포가 정규변동성 성질을 갖는 사례를 통하여 파산가능성의 추이를 살펴보고, 정확한 파산확률 유도에 결정적인 역할을 하는 계수를 추정하는 실증연구에 초점을 둔다. 추정된 결정계수와 보험위험 확률모형의 안전지수와의 연관성을 분석하여 파산확률의 추이를 진단하는 방법도 함께 진행된다.

Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교 (Comparison of methods of approximating option prices with Variance gamma processes)

  • 이재중;송성주
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.181-192
    • /
    • 2016
  • 옵션의 가격을 결정하는 문제에서 블랙-숄즈 모형이 가지는 단점을 보완하기 위해 블랙-숄즈 가격을 선도항으로 하여 보정항을 구하는 근사적 옵션가격의 결정방법을 고려하였다. 이러한 근사적 가격결정 방법들은 비교적 적은 자료를 가지고 간단한 계산으로 다양한 형태의 위험중립 확률분포에 의한 옵션가격을 계산할 수 있다. 이 논문에서는 일반적으로 관찰되는 시장상황을 모사한 모의실험과 실제 시장에서 관측되는 KOSPI200 옵션가격 자료를 통해 몇 가지 근사방법들의 적합성과를 비교, 평가하였다. 헤르미트 다항식 계열의 Edgeworth 확장과 A-type Gram-Charlier, C-type Gram-Charlier 방법, NIG 분포를 이용하는 방법, 비선형 회귀를 이용한 점근적 근사방법이 고려되었다. 모의실험에서는 순수 점프 레비 확률과정 가운데 옵션가격이 닫힌 해의 형태로 존재하는 Variance gamma 과정을 가정하여 자료를 생성하였다. 모의실험과 실제 자료분석의 결과, 분포함수를 먼저 근사하여 가격을 계산하는 것보다 근사적 가격식을 유도하여 직접 가격을 근사하는 방법들의 성능이 좀 더 좋았으며, 그 가운데 비선형 회귀를 이용한 점근적 근사방법이 상대적으로 좋은 성능을 보였다.

L$\acute{e}$vy과정 하에서 추세와 도약이 있는 경우 옵션가격결정모형 : Gerber-Shiu 모형을 중심으로 (Option Pricing Models with Drift and Jumps under L$\acute{e}$vy processes : Beyond the Gerber-Shiu Model)

  • 조승모;이필상
    • 재무관리연구
    • /
    • 제24권4호
    • /
    • pp.1-43
    • /
    • 2007
  • 전통적인 옵션가격결정모형인 블랙-숄즈 모형(Black-Scholes model)은 기초자산의 로그수익률(log-return)이 브라운운동(Brownian motion)을 따른다는 가정에 기반을 두고 있다. 그러나 이 가정은 현실적인 한계가 많은 것으로 비판을 받아 왔다. 이에 따라 지난 20여 년간 브라운 운동 이외에 새로운 확률과정을 도입한 모형들이 연구되고 도출되었다. 최근에는 레비과정(L$\acute{e}$vy process)에 기반한 모형들이 활발히 연구되어오고 있는데, 그 기원은 1994년 거버(Gerber)와 쉬우(Shiu)에 의한 거버-쉬우 모형(Gerber-Shiu model)이다. 2004년 치앙(Cheang)은, 거버-쉬우 모형이 하나의 레비과정을 가정한 데 비해, 복수의 독립적인 레비과정을 가정하여 옵션가격결정모형을 유도함으로써 거버-쉬우 모형을 추세(drift)와 도약(jump)을 갖는 경우로 확장할 수 있는 가능성을 제시하였다. 본 논문에서는 치앙의 모형을 이용하여 레비과정 하에서의 추세와 도약을 갖는 거버-쉬우 모형을 유도하였다. 여기에 감마분포를 도입하여 1993년에 도출된 헤스톤 모형(Heston model)에 도약을 도입한 형태의 모형을 유도하였다. 아울러 이렇게 유도된 모형에 대하여 KOSPI200 지수 옵션 자료를 사용해서 블랙-숄즈 모형과의 가격설명력을 비교하였다. 그 결과, 본 논문에서 유도된 모형이 블랙-숄즈 모형 이상의 가격설명력을 보이는 것으로 나타났다.

  • PDF

근사적 옵션 가격의 수치적 비교 (Numerical studies on approximate option prices)

  • 윤정연;승지수;송성주
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.243-257
    • /
    • 2017
  • 본 논문에서는 옵션의 가격을 결정하기 위해 사용될 수 있는 몇 가지 근사적인 방법들을 수치적으로 비교하였다. 헤르미트 다항식 계열의 Edgeworth 확장과 A-type Gram-Charlier 방법, C-type Gram-Charlier 방법, normal inverse gaussian (NIG) 분포를 이용하는 방법, 그리고 비선형 회귀를 이용한 점근적 근사방법이 그것이다. 이 방법들을 위험중립 확률측도 하에서 수익률의 분포함수를 근사하여 옵션가격을 계산하는 방식과 옵션의 근사가격식을 먼저 구하고 모수를 추정하여 가격을 계산하는 두 가지 방식을 사용하여 비교하였다. 모의실험에서는 확률변동성 모형에서 많이 사용되는 Heston 모형과 레비확률과정에서 좋은 적합도를 보이는 NIG 모형을 이용하여 자료를 생성하였고, 실제 자료로는 KOSPI200 콜옵션을 이용하였다. 모의실험과 실제 자료분석의 결과, 근사적 가격식을 먼저 구하는 방식이 좀 더 우수한 성능을 보였고 그 가운데 A-type Gram-Charlier와 비선형 회귀를 이용한 점근적 근사방법이 좋은 성능을 보였으며, 분포함수를 추정하여 옵션가격을 계산하는 경우 NIG분포를 이용하는 것이 상대적으로 좋은 결과를 보였다.