• Title/Summary/Keyword: 레그 구조

Search Result 69, Processing Time 0.022 seconds

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

A Study on the Analysis of Causes & Minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing (항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • The purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

Fabrication and Evaluation of Composite Panel with Hat-shaped Stiffeners (모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가)

  • Kim, Geon-Hui;Lim, Do-Wan;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Tae-Joo;Song, Min-Hwan;Shin, Sang-Joon
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • In this paper, composite panels with hat-shaped stiffeners were made using the co-curing, co-bonding and secondary bonding methods. Co-curing is a manufacturing method in which the hat part and the plate are cured simultaneously in a manner that is more cost effective than other methods. Co-bonding is a method in which the stacked prepregs are cured with other cured parts, and secondary bonding is a method in which cured parts are bonded together using an adhesive. A rubber mold was manufactured for co-curing of composite panel with hat-shaped stiffeners, and finite element analyses were done to evaluate the expanding pressure of the rubber mold consistent with the curing temperature. The manufactured panels were also evaluated using a 3-D measurement tester and an ultrasonic tester. Pull-off tests were performed to evaluate their mechanical properties.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.

The study on structural performance of fiber metal laminates (섬유금속 적층판의 구조적 성능 연구)

  • Kim, Sung Joon;Kim, Tae-Uk;Kim, Seungho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • In this paper, yield stress, tangent modulus and failure strain were varied to ascertain the influence of impact response such as impact force histories and residual energy. And the buckling behavior of FML(Fiber Metal Laminates) were analyzed using numerical method. A number of analyses on FML and aluminum panel were conducted for shear and compression loading to compare the capability of stability. And to evaluate the static performance, static analysis has performed for box beam structure. Low-velocity impact analysis has performed on FML made of aluminum 2024 sheet and glass/epoxy prepreg layers. And the buckling and static performance of FML have been compared to aluminum using the analysis results. For the comparison of structural performance, similar analyses have been carried out on monolithic aluminum 2024 sheets of equivalent weight.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Diffusion-controlled Cure Kinetics of High Performance Epoxy/Carbon Fiber Composite Systems (확산속도에 따라 한계경화도를 갖는 에폭시/탄소섬유 복합재료의 경화반응 속도 연구)

  • 박인경;금성우;이두성;김영준;남재도
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2000
  • Using a commercial epoxy/carbon fiber composite prepreg (DMS 2224) as a model system, the cure kinetics of vitrifying thermoset system were analyzed by isothermal and dynamic-heating experiments. Focusing on the processing condition of high performance composite systems, a phenomenological kinetic model was developed by using differential scanning calorimetry (DSC) and reaction kinetics theories. The model system exhibited a limited degree of cure as a function of isothermal temperature seemingly due to the diffusion-controlled reaction rates. The diffusion-controlled cure reaction was incorporated in the development of the kinetic model, and the model parameters were determined from isothermal experiments. The first order reaction was confirmed from the characteristic shape of isothermal cure thermograms, and the activation energy wes 78.43 kJ/mol. Finally, the proposed model was used to predict a complex autoclave thermal condition, which was composed of several isothermal and dynamic-heating stages.

  • PDF

Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin (저온 경화형 에폭시 매트릭스 수지의 경화거동 및 화학유변학에 대한 연구)

  • Na, Hyo Yeol;Yeom, Hyo Yeol;Yoon, Byung Chul;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • Low temperature cure prepregs are being developed for use in the preparation of large-structured fiber-reinforced polymer (FRP) composites with good performance. Cure behavior and chemorheology of low temperature cure epoxy resin system, based on epoxy resin, curing agent, and accelerators, were investigated to provide a matrix resin suitable for the prepreg preparation. Characteristics of cure reaction were studied in both dynamic and isothermal conditions by means of differential scanning calorimetry and rheometry. The low temperature cure epoxy resin system suggested in this study as a matrix resin was curable at $80^{\circ}C$ for 3 h, and showed the gel times of 120 and 20 min at 80 and $90^{\circ}C$, respectively. Thermal and mechanical properties of the cured sample were almost the same as high temperature cure counterparts.

Packaging Substrate Bending Prediction due to Residual Stress (잔류응력으로 인한 패키지 기판 굽힘 변형량 예측)

  • Kim, Cheolgyu;Choi, Hyeseon;Kim, Minsung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • This study presents new analysis method to predict bending behavior of packaging substrate structure by comparing finite element method simulation and measured curvature using 3D scanner. Packaging substrate is easily bent and deflected while undergoing various processes such as curing of prepreg and copper pattern plating. We prepare specimens with various conditions and measure contours of each specimen and compute the residual stresses on deposited films using analytical solution to find the principle of bending. Core and prepreg in packaging substrate are made up of resin and bundles of fiber which exist orthogonally each other. Anisotropic material properties cause peculiar bending behavior of packaging substrate. We simulate the bending deflection with finite element method and verify the simulated deflection with measured data. The plating stress of electrodeposited copper is about 58 MPa. The curing stresses of solder resist and prepreg are about 13 MPa and 6.4 MPa respectively in room temperature.