• Title/Summary/Keyword: 램 가속기

Search Result 18, Processing Time 0.024 seconds

램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구

  • 전용희;이재우;변영환
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.15-15
    • /
    • 1999
  • 램 가속기에 대한 연구는 램 가속기의 작동 조건이 고온, 고압, 초고속이라는 점과 가속기 내부에서 급격한 화학반응이 수반된다는 특성으로 인하여 실험과 해석상의 상당한 어려움이 존재한다. 램 가속기는 작동 모드에 따라 탄체 후방의 열적 질식 조건을 이용한 열적 질식 모드(Thermally Choked Mode)와 탄체 표면에 형성되는 데토네이션파를 이용한 초폭굉모드(Superdetonative Mode)로 나뉘어진다. 본 연구는 초폭굉 모드로 작동하는 램 가속기의 작동 성능 향상을 위한 방법으로 수치 최적화 기법을 이용한 램 가속기 내부 예 혼합기의 조성비 최적화를 수행하였다. 설계 변수로는 수소와 질소의 조성비를 선정하였으며, 최적 설계 목표는 일정한 질량과 형상을 갖는 탄체를 초기속도 2500m/s에서 3000m/s로 가속시키기 위하여 필요한 최소 램 가속관의 길이로 정하였다. 본 연구에서는 구베법에 기반한 Simplex 방법 및 SLP(Sequential Linear Programming)등의 수치 최적화 기법을 적용하였고, 가속기 내부의 유동장은 해석의 효율성을 고려하여 이차원 비점성 유동으로 가정하였고, 비평형 화학반응 해석을 수행하였다.

  • PDF

A Numerical Study on Charactericstics of Mixture Composition in Superdeonative Mode Ram Accelerator (초폭굉 모드 램가속기의 혼합기 강도 특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.244-247
    • /
    • 2008
  • Based on ISL' S225 superdetonative mode ram accelerator, numerical simulation is conducted for strong mixture cases ($2H_2+O_2+3CO_2,\;2H_2+O_2+2.5CO_2$). For 3.0CO2 case, projectile is not acclerated, but 2.5CO2 case has sucessful acceleration. It shows that superdetonative mode ram accelerator can be operated when using mixture which strong enough to ignition.

  • PDF

램 가속기 탄체 형상에 따른 데토네이션파와 가속 특성에 관한 연구

  • 전용희;이재우;변영환
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.16-16
    • /
    • 1999
  • 램 가속기 탄체 형상에 따른 가속 특성에 대한 연구는 열적 질식 모드에 대하여 Washington 대학, ISL 연구소 등에서 실험적으로 수행되어 졌으나 초폭굉 연소 모드에 대해서는 아직 미비한 실정이다. 초폭굉 연소 모드 램 가속기의 기본적인 탄체 형상은 원추-원통-원추로 이루어진 형상으로 탄체 전면에 형성된 경사 충격파가 탄체와 가속기 사이에서 반사되며 데토네이션파를 발생시켜 가속하게 된다. 탄체의 형상에 따라서 탄체 주위에 형성되는 충격파 구조는 차이를 나타내게 되고 발생되는 데토네이션파의 위치와 강도를 따라서 탄체의 가속특성은 상당한 차이를 나타낸다. 기본적으로 탄 체의 전면 형상은 경사 충격파의 강도와 단체 주위의 유동장의 특성을 결정하는 주요 요인이고 이에 따라 데토네이션파의 형성과 안정화 역시 결정되어 탄체의 가속 특성을 결정짓는다. 또한 데토네이션파를 임의의 위치에 형성하기 위해 이중 원추형상의 충격파-충격파 상호작용을 이용하여 데토네이션파를 발생시켜 탄체를 가속시킨다.

  • PDF

The Formation of Detonation Wave and Acceleration Characteristics with the Ram Accelerator Projectile Shapes (램 가속기 탄체 형상에 따른 데토네이션파와 가속 특성에 관한 연구)

  • 전용희;이재우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.82-91
    • /
    • 1999
  • Projectile shapes of the superdetonative ram accelerator have great effects on shock structures, detonation wave formation, and ram acceleration characteristics. In this study, cone-cylinder-cone, a baseline projectile configuration of the superdetonative combustion mode, double-cone configurations and power-law shape, have been numerically investigated to analyze the effect of the front/rear configuration changes, on the flow field around the projectile, detonation wave formation process, and projectile acceleration characteristics. Hence, a ram projectile configuration with conspicuously improved acceleration characteristics has been proposed by adjusting the double cone angle and height. The results provide useful information for the ram accelerator design optimization study.

  • PDF

Premixture Composition Optimization for the Ram Accelerator Performance Enhancement (램 가속기 성능 향상을 위한 예 혼합기 조성비 최적화에 관한 연구)

  • 전용희;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2$, $O_2$, $N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species have been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced 19% within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Behavior of Detonation Wave in Superdetonative Ram Accelerator (초폭굉 모드 램 가속기에서 데토네이션파의 거동특성)

  • Sung, Kun-Min;Jeung, In-Seuck;Moon, Guee-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.28-31
    • /
    • 2005
  • The numerical simulation is conducted for analysis flame structure of superdetonative ram accelerator experiment by ISL(French-German Research Institute in Saint Louis). Fully coupled chemically non-equilibrium Navier-Stokes equation is used. Shockwave structure of superdetonative ram accelerator and behavior of detonation wave is studied. Maintaining of detonation wave is very important to accelerate projectile, Because detonation wave make high pressure gases and this high pressure accelerate projectile.

  • PDF

Ram Accelerator Optimization Using the Response Surface Method (반응면 기법을 이용한 램 가속기 최적설계에 관한 연구)

  • Jeon Kwon-Su;Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.55-63
    • /
    • 2000
  • In this paper, the numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length, required to accelerate projectile from initial velocity V/sub 0/ to target velocity V/sub e/. The premixture is composed of H₂, O₂, N₂ and the mole numbers of these species are selected as design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and the efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error compared with analysis result is only 0.01% and it is demonstrated that present method can be applied to more practical design optimization problems with many design variables.

  • PDF

Numerical Study of Regular Start and Unstart Process of Superdetonative Speed Ram Accelerator (초폭굉속도 램 가속기의 정상발진 및 불발과정의 수치적 연구)

  • Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.31-41
    • /
    • 2000
  • A numerical study was conducted to investigate the combustion phenomena of regular start and unstart processes based on ISL#s RAMAC 30 experiments with different diluent amounts in a ram accelerator. The initial projectile launching speed was 1800m/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with $5CO_2\;or\;4CO_2$. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1800m/s, as was found in the experiments using a steel-covered projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the regular start and unstart processes found in the experiments with an aluminum-covered projectile. The numerical results matched almost exactly to the experimental results. As a result, it was found that the regular start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

Numerical Simulation of the Experimental Investigation of the Two Dimensional Ram Accelerator Combustion Flow Field (이차원 램 가속기 연소 유동장의 실험적 연구의 수치 모사)

  • 최정열;정인석;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.8-23
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the comparison with the experiments performed to investigate the ram accelerator flow field by using an expansion tube facility in Stanford University. Wavier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state numerical simulation shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$$O_2$$17N_2$ fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$$O_2$$12N_2$ mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. From the result of unsteady numerical simulation, the experimental result seems to be an instantaneous state during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.