• 제목/요약/키워드: 랜덤 텐서

검색결과 5건 처리시간 0.021초

분산 테라스케일 텐서 생성기 (TeT: Distributed Tera-Scale Tensor Generator)

  • 전병수;이정우;강유
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.910-918
    • /
    • 2016
  • 많은 종류의 데이터들은 텐서로 표현될 수 있다. 텐서란 다차원 배열을 의미하며, 그 예로 (사용자, 사용자, 시간)으로 이루어진 소셜 네트워크 데이터가 있다. 이러한 다차원 데이터 분석에 있어서 텐서 생성기는 시뮬레이션, 다차원 데이터 모델링 및 이해, 샘플링/외삽법 등 다양한 응용이 가능하다. 하지만, 존재하는 텐서 생성기들은 실제 세계의 텐서처럼 멱 법칙을 따르는 특성과 희박성을 갖는 텐서를 생성할 수 없다. 또한, 처리가능한 텐서 크기에 한계가 존재하고, 분산시스템에서 추가 분석을 하려면 텐서를 분산시스템에 업로드 하는 추가비용이 든다. 본 논문은 분산 테라스케일 텐서 생성기(TeT)를 제안함으로써 이러한 문제를 해결하고자 한다. TeT는 희박성을 갖는 랜덤 텐서와 희박성과 멱 법칙을 따르는 특성을 갖는 Recursive-MATrix 텐서, 크로네커 텐서를 크기 제한없이 생성할 수 있다. 또한, TeT에서 생성된 텐서는 같은 분산 시스템에서 추가적인 텐서분석이 가능하다. TeT는 효율적인 설계로 인해 거의 선형적인 머신확장성을 보인다.

텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화 (Natural Scene Text Binarization using Tensor Voting and Markov Random Field)

  • 최현수;이귀상
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.18-23
    • /
    • 2015
  • 본 논문에서는 텐서보팅을 이용하여 기존 마르코프 랜덤 필드 메소드 안의 가우시안 혼합 모델 함수의 성능을 향상시킬 수 있는 적합한 클러스터 개수 검출 방법을 제시한다. 제안하는 방법의 핵심 포인트는 텐서보팅의 인풋 데이터 토큰의 연속성인 saliency map을 통한 중심점 개수의 추출이다. 우리는 가장 먼저 주어진 자연 영상에서 전경 및 배경 후보 영역을 분리한다. 다음으로, 분리된 각 후보 영역에 대하여 텐서보팅을 적용하여 적절한 클러스터 개수를 추출한다. 우리는 검출된 클러스터 개수를 이용하여 정확한 가우시안 혼합 모델 모델링을 수행할 수 있다. 그리고 이를 적용한 마르코프 랜덤 필드의 unary term과 pairwise term을 계산하여 자연 영상의 텍스트 이진화 결과를 반환한다. 실험 결과, 제안된 방법이 최적의 클러스터 개수를 반환하고, 향상된 텍스트 이진화 결과를 반환함을 확인하였다.

두 가지 유형의 바이오마커를 이용한 파킨슨병의 진단과 신경섬유 경로의 특징 분석 (Diagnosis of Parkinson's Disease Using Two Types of Biomarkers and Characterization of Fiber Pathways)

  • 강신태;이욱;박병규;한경숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권10호
    • /
    • pp.421-428
    • /
    • 2014
  • 파킨슨병은 뇌의 흑질 영역에서 도파민계 신경이 파괴되는 질병으로 알츠하이머병과 함께 대표적인 퇴행성 뇌 질환이다. 현재까지 병을 완치시킬 수 있는 치료법은 없지만 병의 진행을 완화시킬 수 있는 치료법이 존재하기 때문에 병의 진단이 굉장히 중요하다. 파킨슨병을 진단하기 위한 과거의 연구는 대부분 단일 바이오마커를 이용한 것으로 이러한 방법은 파킨슨병 환자를 높은 정확도로 진단할 수 있지만 정상인에 대한 진단은 상대적으로 낮은 성능의 한계성이 존재한다. 따라서 본 연구에서는 생화학적 바이오마커인 뇌척수액 내의 ${\alpha}$-synuclein 단백질 수치와 영상학적 바이오마커인 확산 텐서 영상의 여러 모수들을 결합하여 특징으로 사용하는 파킨슨병 진단 모델을 개발하고 성능을 평가하였다. 진단을 위해 개발된 모든 모델은 10-fold cross validation 성능평가에서 정확도가 최고 91.3%의 높은 성능을 보였으며, test 성능평가에서는 확산 텐서 영상의 모수들 중 FA와 ${\alpha}$-synuclein 단백질 수치가 결합된 모델, MO와 ${\alpha}$-synuclein 단백질 수치가 결합된 두 모델에서 최고 72%의 정확도 성능을 보여 파킨슨병의 진단에 유용하게 사용될 수 있는 가능성을 제시하였다. 파킨슨병의 진단을 위해 개발된 모델의 영상학적 특징 벡터를 통하여 파킨슨병 환자와 정상인의 신경섬유 경로의 특징을 분석하였다.

합성곱 신경망을 이용한 손상된 볼트의 이미지 분류 (Image Classification of Damaged Bolts using Convolution Neural Networks)

  • Lee, Soo-Byoung;Lee, Seok-Soon
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.109-115
    • /
    • 2022
  • 딥러닝 기법과 컴퓨터 비전 기술을 융합한 합성곱 신경망 알고리즘은 고성능 컴퓨팅 시스템을 기반으로 이미지 데이터의 분류를 가용하게 한다. 본 논문에서는 합성곱 신경망 알고리즘을 대표적인 딥러닝 프레임워크인 텐서플로와 학습 기법을 이용하여 구현하고 이미지 분류 문제에 적용한다. 모델의 지도학습에 필요한 데이터는 동일 종류의 볼트를 이용하여 나사산이 정상인 볼트와 나사산이 손상된 볼트로 구분하여 이미지를 생성하였다. 소량의 이미지 데이터를 이용한 학습 모델은 좋은 성능으로 볼트의 손상을 탐지하였다. 그리고 모델의 내부 구성에 따른 학습 성능을 비교하기 위해 합성곱 신경망 내 컨볼루션 레이어의 개수를 변경하고 과적합 회피기법을 선택 적용하여 이미지 분류 성능을 확인하였다.

딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구 (Detecting Adversarial Example Using Ensemble Method on Deep Neural Network)

  • 권현;윤준혁;김준섭;박상준;김용철
    • 융합보안논문지
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 2021
  • 딥뉴럴네트워크는 이미지 인식, 음성 인식, 패턴 인식 등에 좋은 성능을 보여주고 있는 대표적인 딥러닝모델 중에 하나이다. 하지만 이러한 딥뉴럴네트워크는 적대적 샘플을 오인식하는 취약점이 있다. 적대적 샘플은 원본 데이터에 최소한의 노이즈를 추가하여 사람이 보기에는 이상이 없지만 딥뉴럴네트워크가 잘못 인식 하게 하는 샘플을 의미한다. 이러한 적대적 샘플은 딥뉴럴네트워크를 활용하는 자율주행차량이나 의료사업에서 차량 표지판 오인식이나 환자 진단의 오인식을 일으키면 큰 사고가 일어나기 때문에 적대적 샘플 공격에 대한 방어연구가 요구된다. 본 논문에서는 여러 가지 파라미터를 조절하여 적대적 샘플에 대한 앙상블 방어방법을 실험적으로 분석하였다. 적대적 샘플의 생성방법으로 fast gradient sign method, DeepFool method, Carlini & Wanger method을 이용하여 앙상블 방어방법의 성능을 분석하였다. 실험 데이터로 MNIST 데이터셋을 사용하였으며, 머신러닝 라이브러리로는 텐서플로우를 사용하였다. 실험방법의 각 파라미터들로 3가지 적대적 샘플 공격방법, 적정기준선, 모델 수, 랜덤노이즈에 따른 성능을 분석하였다. 실험결과로 앙상블 방어방법은 모델수가 7이고 적정기준선이 1일 때, 적대적 샘플에 대한 탐지 성공률 98.3%이고 원본샘플의 99.2% 정확도를 유지하는 성능을 보였다.