• Title/Summary/Keyword: 랙앤피니언

Search Result 3, Processing Time 0.018 seconds

Steering Model for Vehicle Dynamic Analysis (차량 동력학 해석을 위한 조향장치 모델링)

  • Tak, Tae-Oh;Kim, Kum-Cheol;Yoon, Jung-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.214-221
    • /
    • 1999
  • In this research, a power-assisted steering system is modeled as a part of a full vehicle dynamic model. The dynamic model of the steering system incorporates hydraulic and dynamic relations between major parts of a steering system, such as steering column, control valve, rack and pinion gear. Through an experimental setup of the steering system, the steering system model is validated. The steering model is included in a full vehicle dynamic model of a car, where kinematic relations between steering and suspension system are defined, and various simulations are performed to evaluate the performance of steering system in conjunction with overall dynamic performance of the vehicle.

  • PDF

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.

Natural Ventilation Effect of Bending Panel Type Windows in Greenhouse (굴절패널방식 환기창의 자연환기 효과)

  • Lee, Si-Young;Kim, Jin-Young;Kim, Hyun-Hwan;Jeon, Hee
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.71-74
    • /
    • 2000
  • 일반적으로 온실은 저온기에는 보온이나 난방을 하면서 적극 사용하고 있으나 고온기에는 냉방에 소요되는 에너지가 난방에 비해 상대적으로 많이 소요되므로 온실의 활용도가 떨어지게 된다. 자연환기 시스템은 에너지를 사용하지 않거나 최소한으로 줄여 온실내 온도를 최소한 외부와 동일하게 하거나 낮게 하기 위한 장치라고 할 수 있다. 자연환기를 위한 환기창으로 유리온실이나 경질판 온실과 같은 양지붕형 온실에서는 측창으로 3Way방식이나 권취식, 프로젝트방식 등 다양한 환기창을 사용하고 있으나 천창은 주로 온실 길이방향의 연속형 창틀을 랙앤피니언이나 X형 개폐암으로 개폐하는 프로젝트 방식을 많이 사용하고 있다. (중략)

  • PDF