• Title/Summary/Keyword: 래치

Search Result 136, Processing Time 0.023 seconds

A Study on the Design of High speed LIne Memory Circuit for HDTV (HDTV용 고속 라인 메모리 회로 설계에 관한 연구)

  • 김대순;정우열;김태형;백덕수;김환용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.529-538
    • /
    • 1992
  • Recently, image signal processing techniques for HDTV signal have been drastically developed. This kind of skill improvement on signal processing need specific memory device for video signal. in this paper, data latch scheme which implements CMOS flip-flop to hold Information from in-put strobe and new reading method is devised to attain a proper access time suitable for HDTY signal. Compared with conventional write scheme, data latch method has two procedures to complete write operation : bit line write and storage cell write, enabling concurrent I /0 operation at the same address. Also, fast read access is possible through the method similar to static column mode and the separated read word line.

  • PDF

Optimization of Base Plates and Contact Switches in Trunk Latches (트렁크 래치의 베이스 플레이트와 접촉스위치의 최적화)

  • Kim, Kyungnam;Noh, Yoojeong;Kim, Donghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.97-104
    • /
    • 2014
  • Automobile trunk latches enable trunks to be opened and closed by a latch mechanism, which can be selectively positioned between a locked condition and an open condition. To maintain structural and electronic performance of the trunk latch, the latch needs to endure impact load that occurs in its open and close motion, and a dynamic mechanism needs to be electronically controled by a contact switch connected with a small DC motor. A base plate, which is the most important component relating to the structural safety, commonly uses a high stiffness material SAPH440-P with high manufacturing cost. In this paper, through structural analysis and optimization, production cost is significantly reduced by replacing SAPH440-P used in some region of the base plate with engineering plastic PBT GF 20%. The optimized contact switch reduces difference between distributed pressures of its two legs, which leads to improve the electronic performance of the trunk latch.

Improvement of ESD (Electrostatic Discharge) Protection Performance of NEDSCR (N-Type Extended Drain Silicon Controlled Rectifier) Device using CPS (Counter Pocket Source) Ion Implantation (CPS 이온주입을 통한 NEDSCR 소자의 정전기 보호 성능 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latch-up problem during normal operation. However, a modified NEDSCR device with proper junction/channel engineering using counter pocket source (CPS) ion implantation demonstrates itself with both the excellent ESD protection performance and the high latch-up immunity. Since the CPS implant technique does not change avalanche breakdown voltage, this methodology does not reduce available operation voltage and is applicable regardless of the operation voltage.

Implementation of Optimal Flicker Free Display Controller for LED Display System (LED 디스플레이 시스템을 위한 최적의 플리커 프리 디스플레이 제어장치 구현)

  • Lee, Juyeon;Kim, Daesoon;Lee, Jongha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.123-133
    • /
    • 2017
  • In this paper, we developed an optimal flicker-free control algorithm operating within 16 luminance implementation bits and 512 brightness implementation pulses irrespective of LPM(LED Pixel Matrix) module configuration on dynamic driving method of LED display system. As an implementation method, we turned the refresh rate up by increasing the number of scans through multiple shift-latches which were devised from conventional shift-latch scheme for full color representation. As a result, the LED display system of this method has no flicker phenomenon because of the novel refresh rate higher than 2,040[Hz] incomparable to 240~480[Hz] of conventional system.

Improvements of Extended Drain NMOS (EDNMOS) Device for Electrostatic Discharge (ESD) Protection of High Voltage Operating LDI Chip (고전압용 LDI 칩의 정전기 보호를 위한 EDNMOS 소자의 특성 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • High current behaviors of the extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOSFET) for electrostatic discharge (ESD) protection of high voltage operating LDI (LCD Driver IC) chip are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analysis demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. Also, background doping concentration (BDC) is proven to be a critical factor to affect the high current behavior of the EDNMOS devices. The EDNMOS device with low BDC suffers from strong snapback in the high current region, which results in poor ESD protection performance and high latchup risk. However, the strong snapback can be avoided in the EDNMOS device with high BDC. This implies that both the good ESD protection performance and the latchup immunity can be realized in terms of the EDNMOS by properly controlling its BDC.

Study on New LIGBT with Multi Gate for High Speed and Improving Latch up Effect (래치 업 특성의 개선과 고속 스위칭 특성을 위한 다중 게이트 구조의 새로운 LIGBT)

  • 강이구;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.371-375
    • /
    • 2000
  • In this paper a new conductivity modulated power transistor called the Lateral Insulated Gated Bipolar Transistor which included n+ ring and p-channel gate is presented. A new lateral IGBT structure is proposed to suppress latch-up and to improve turn off time by imploying n+ ring and p-channel gate and verified by MEDICI. The simulated I-V characteristics at $V_{G}$=15V show that the latch up occurs at $V_{A}$=18V and 6.9$\times$10$^{-5}$ A/${\mu}{\textrm}{m}$ for the proposed LIGBT while the conventional LIGBT latches at $V_{A}$=1.3V and 1.96${\mu}{\textrm}{m}$10$^{-5A}$${\mu}{\textrm}{m}$. It is shown that turn off characteristic of new LIGBT is 8 times than that of conventional LIGBT. And noble LIGBT is not n+ buffer layer because that It includes p channel gate and n+ ring. Therefore Mask for the buffer layer isn’t needed. The concentration of n+ ring is and the numbers of n+ ring and p channel gate are three for the optimal design.n.n.n.n.

  • PDF

A Study on the Micro-defects Characteristics and Latch-up Immune Structure by RTA in 1MeV P Ion Implantation (1MeV 인 이온 주입시 RTA에 의한 미세결함 특성과 latch-up 면역에 관한 구조 연구)

  • Roh, Byeong-Gyu;Yoon, Seok-Beom
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.101-107
    • /
    • 1998
  • This paper is studied micro-defect characteristics by phosphorus 1MeV ion implantation and Rs, SRP, SIMS, XTEM for the RTA process was measured and simulated. As the dose is higher, the Rs is lower. When the dose are $1{\times}10^{13}/cm^2,\;5{\times}10^{13}/cm^2,\;1{\times}10^{14}/cm^2$, the Rp are $1.15{\mu}m,\;1.15{\mu},\;1.10{\mu}m$ respectively. As the RTA time is longer, the maximum concentration position is deeper from the surface and the concentration is lower. Before the RTA was done, we didn't observe any defect. But after the RTA process was done, we could observe the RTA process changed the micro-defects into the secondary defects. The simulation using the buried layer and connecting layer structure was performed. As results, the connecting layer had more effect than the buried layer to latch-up immune. Trigger current was more $0.6mA/{\mu}m$ and trigger voltage was 6V at dose $1{\times}10^{14}/cm^2$ and the energy 500KeV of connecting layer Lower connecting layer dose, latch-up immune characteristics was better.

  • PDF

A Static Latched DCVSL Circuits for Asynchronous Pipeline Scheme (비동기 파이프라인 구조를 위한 정적 래치 DCVSL 회로)

  • 김영우;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.759-762
    • /
    • 1998
  • In this paper, a SL-DCVSL (static latched differential cascode voltage switch logic) circuit for the asynchronous pipeline is proposed. The proposed SL-DCVSL circuit is a slightly modified version of the DCVSL circuit, and used to improve the storage capability of the precharged functional blocks. The proposed SL-DCVSL has more robust storage characteristics compared to the conventional LDCVSL (latched DCVSL〔2〕). The operation of the proposed circuit is verified by simulating the asynchronous FIFO (First-In First-Out) structure.

  • PDF

Noble SOI

  • 정주영
    • Electrical & Electronic Materials
    • /
    • v.12 no.9
    • /
    • pp.57-63
    • /
    • 1999
  • SOI 구조의 MOSFET은 제조공정이 상대적으로 간단하며 CMOS 래치 업 현상이 일어나지 않고, soft error에 의한 회로의 오동작 가능성이 매우 낮은 이외에도 낮은 기생 정전용량 및 누설전류 특성을 가지므로 0.1 미크론 이하의 소자를 제작하는데 적합하여 저전압, 초고속 VLSI 설계에 적합한 소자로 각광받고 있다. 본고에서는 새로운 구조의 SOI MOSFET 구조들의 특성과 장, 단점을 검토하고 나아가 BJT(Bipolar Junction Transistor) 및 기타 소자들을 SOI 구조로 제작한 결과에 대해 간단히 검토함으로써 1999년 현재 SOI 기술의 현황을 소개하고자 한다.

  • PDF

Latchup Characteristics of N-Type SCR Device for ESD Protection (정전기 보호를 위한 n형 SCR 소자의 래치업 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1372-1373
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type SCR with P-type MOSFET pass structure (NSCR_PPS), was analyzed for high voltage I/O applications. A conventional NSCR_PPS device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latchup problem during normal operation. However, a modified NSCR_PPS device with proper junction/channel engineering demonstrates highly latchup immune current- voltage characteristics.

  • PDF