• Title/Summary/Keyword: 라이다 스캔

Search Result 53, Processing Time 0.04 seconds

Shipborne Mobile LiDAR(Light Detection and Ranging) System for the Monitoring of Coastal Changes (해안지형 모니터링을 위한 해상모바일라이다 지형 측정 시스템 구축)

  • Kim, ChangHwan;Kim, HyunWook;Kang, GilMo;Kim, GiYoung;Kim, WonHyuck;Park, ChanHong;Do, JongDae;Lee, MyoungHoon;Choi, SoonYoung;Park, HyeonYeong
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land. Regular monitoring of coastal changes is essential at key locations with such volatility. But the survey method of terrestial LiDAR(Light Detection and Ranging) system has much time consuming and many restrictions. For effective monitoring coastal changes, KIOST(Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system, installed in a research vessel, comprised a land based LiDAR(RIEGL LMS-420i), an IMU(MAGUS Inertial+), a RTKGNSS(LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land based LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. We conducted test measurements in the Anmok-Songjung beach around the Gangneung port. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

Measurement of Joint Roughness in Large-Scale Rock Fracture Using LIDAR (LIDAR를 이용한 대규모 암반 절리면의 거칠기 측정)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.52-63
    • /
    • 2009
  • This is a study on large-scale rock joint roughness measurements using LIDAR (light detection and ranging) and the Split-FX point cloud processing software. The large-scale rock Joint Roughness Coefficient (JRC) is calculated using the maximum amplitude of joint asperities over the profile length on large-scale Joint surfaces of rock. As the profile length increases, JRC decreases due to scale-effects of rock specimens and is non-stationary. Also JRC shows anisotropy depending on the profile direction. The profile direction is measured relative to either dip or strike of the large-scale joint.

Evaluation of Airborne LiDAR Data using Field Surveyed Ground Control Points (현지 측량기준점을 이용한 LiDAR 데이터의 정확도 검증)

  • Wie, Gwang-Jae;Yang, In-Tae;Suh, Young-Woon;Sim, Jung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.11-18
    • /
    • 2006
  • In this paper, airborne LiDAR data were evaluated in horizontal and vertical accuracy. By using zigzag scanning type of LiDAR, GCPs are not tested directly. So points around GCPs were used in this evaluation. Building corner points were made from LiDAR's building planar and compared with ground surveyed GCPs, in horizontal accuracy test. Its accuracy shows 19cm average and 21cm RMSE and 15 points were within 20cm among 16 points. In vertical accuracy test, 41 GCPs were used and it shows 11cm average and 14cm RMSE and 75% of GCPs were within 15cm. This could be a criterion in topographic map modification and basic geographic DB and 3D data construction using airborne LiDAR data.

  • PDF

An Filtering Automatic Technique of LiDAR Data by Multiple Linear Regression Analysis (다중선형 회귀분석에 의한 LiDAR 자료의 필터링 자동화 기법)

  • Choi, Seung-Pil;Cho, Ji-Hyun;Kim, Jun-Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.109-118
    • /
    • 2011
  • In this research estimated accuracies that were results in all the area of filtering of the plane equation that was used by whole data set, and regional of filtering that was driven by the plane equation for each vertual Grid. All of this estimates were based by all the area of filtering that deduced the plane equation by multiple linear regression analysis that was used by ground data set. Therefore, accuracy of all the area of filtering that used whole data set has been dropped about 2~3% when average of accuracy of all the area of filtering was based on ground data set while accuracy of Regional of filtering dropped 2~4% when based on virtual Grid. Moreover, as virtual Grid which was set 3~4 cm was difference about 2% of accuracy from standard data. Thus, it leads conclusion of set 3~4 times bigger size in virtual Grid filtering over LiDAR scan gap will be more appropriated. Hence, the result of this research allow us to conclude that there was difference in average accuracy has been noticed when we applied each different approaches, I strongly suggest that it need to research more about real topography for further filtering accuracy.

Determination of Effective Energy of CT X-ray beams (CT X-선 빔들의 유효에너지 결정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • The purpose of this study is to determine the effective energy of CT X-ray beams by using the CT slice images of a CT number calibration insert part in the AAPM CT performance phantom. The CT number calibration insert part in the AAPM CT performance phantom was scanned five times by using a CT canner for 80, 100 and 120 kVp X-ray beams. The average value of CT numbers of each pin were measured for each CT slice image. The correlation coefficients were obtained by linear fit between the average value of CT numbers measured and liner attenuation coefficient under different energy at each pin calculated from data of NIST. A photon energy corresponding to the maximum value of the obtained correlation coefficient was determined as an effective energy. As a result, the effective energy was 56, 62 and 66~67 keV, respectively, for 80, 100 and 120 kVp X-ray beams.

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

A Tourism Curation Platform Build Based on Local Area Wireless Communication (근거리무선통신 기반 관광 큐레이션 플랫폼 구축)

  • Seo, Gui-Bin;Sung, Nak-Jun;Yum, HyoSub;Hong, Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.154-157
    • /
    • 2016
  • 최근 스마트폰의 보급과 더불어 근거리 무선 통신의 발달로 인해 다양한 서비스들이 연구 개발되고 있다. 한국에 방문하는 외래 관광객 수는 꾸준히 증가하고 있는 추세이며, 이 중 중국인 관광객은 2013년 기준 전체 방한 외국인 관광객 중 약 35.5%를 차지하였다. 중국인 관광객의 82.8%가 쇼핑을 목적에 두고 있으며, 그 중 향수, 화장품, 의류 항목에 가장 많은 여행시간을 투자하고 있다. 또한 방한 중국인 관광객 중 대다수가 인터넷을 사용하여 관광 정보를 입수 하고 있지만, 이러한 정보를 편리하게 제공할 서비스는 부족한 상황이다. 본 논문에서는 현재 발달되고 있는 근거리 무선 통신 중 NFC와 Beacon을 활용하여 안드로이드 기반의 관광 큐레이션 플랫폼을 구현 하였다. NFC 태그를 활용하여 쇼핑, 관광 관련 정보 및 정확한 제품 및 서비스 정보를 제공하고, Beacon을 이용하여 매장정보 및 각종 마케팅 프로모션과 이벤트 정보를 수신하도록 하였다. 추가적으로 현재 많이 사용되고 있는 Zxing 라이브러리를 활용한 QRCode 및 Barcode 리더기를 활용하여 스캔을 통한 제품 정보를 확인 가능하도록 구현하였다.

Extraction of Vein Patterns using Hierachical Slicing Algorithm (계층적 슬라이싱 알고리즘을 사용한 정맥 패턴 검출)

  • Choi, Won-Seok;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.861-864
    • /
    • 2009
  • Recently, the biometric recognition technology of veins in different parts of hand is very active. In this paper the image hierarchical slicing provides a way to detect vein patterns. The scanned vein image will be sliced into various thicknesses. We first get the average brightness values of the sliced image and then convert them into curvature where we can detect candidates of the vein. The candidates of the vein are used to do a further analysis. We search all of the vein candidates and analyze them to get the real vein pattern in the overlapping extraction. We propose this novel algorithm to detect the vein pattern from the original image.

  • PDF

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.

Dose Measurements using Phantoms for Tube Voltage, Tube Current, Slice Thickness in MDCT (MDCT의 관전압, 관전류, 슬라이스 두께 변화에 따른 팬텀의 선량 분포 측정)

  • Lee, Chang-Lae;Jeon, Seong-Su;Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2007
  • The purpose of this study was to measure and evaluate radiation dose for MDCT parameters. Patient dose for various combination of MDCT parameters were experimentally measured, using MDCT (GE light speed plus 4 slice, USA), model 2026C electrometer (RADICAL 2026C, USA), standard Polymethylmethacrylate (PMMA) head and body CT dosimetry phantoms. In clinical situations, for a typical abdominal scan performed with MDCT at 120 kVp, 180 mAs, 20 mm collimation, and a pitch of 0.75 $CTDI_w,\;CTDI_{vol}$ were measured as 20.2 mGy, 26.9 mGy, respectively. When scan length is assumed as 271.3 mm, DLP and measured effective dose of the abdominal would be calculated as $729.1\;mGy{\cdot}cm$, 10.9 mSv, respectively.

  • PDF