• Title/Summary/Keyword: 라다클로린

Search Result 3, Processing Time 0.015 seconds

Photodynamic effect of Photofrin and Radachlorin against Staphylococcus aureus and Staphylococcus epidermidis (황색포도알균과 표피포도알균에 대한 포토프린과 라다클로린의 광역학 효과)

  • Seo, Choong-Won;Ryu, Jae-Gi;Kwon, Pil-Seung
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of this study was to evaluate the photodynamic therapy effects against staphylococci using Photofrin and Radachlorin with Light emitting diode(LED). Experimental methods, The bacterial suspensions containing Staphylococcus aureus and Staphylococcus epidermidis at $1{\times}10^5$ were prepared and diluted to different concentrations of photosensitizer, Photofrin or Radachlorin, on 1.25, 2. 5,5 and $10{\mu}g/ml$. The bacterial suspensions were exposed to 630 and 670 nm LED light at the energy density of 14.4 and $19.8J/cm^2$, respectively. The CFU results of S. aureus and S. epidermidis were showed 33 and 50 colony forming at $5{\mu}g/ml$ of Photofrin, respectively and both of them perfectely were dead at $5{\mu}g/ml$ of Radachlorin. The fluorescent intensity by flow cytometry was showed the increase in the dead cells than the normal cells. In the TEM photograph, the damage of bacterial membrane and the distortion of cell morphology were observed. These results suggest that photodynamic therapy combine with Photofrin and Radachlorin can be applied a new modality for antibacterial therapy.

Antimicribial Photodynamic Therapy Using Diode Laser on Candida Albicans (다이오드 레이저를 이용한 칸디다 알비칸스에 대한 항균 광역학 요법)

  • Kim, Ji-Won;Koo, Bon-Yeoul
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • This study aimed to explore whether photodynamic therapy using Radachlorin and diode laser is an effective inhibitor of Candida albicans. Suspensions of Candida albicans were obtained, inoculated in petri dishes with Radachlorin, and incubated for 30 min. Then, the laser light of a diode laser was irradiated at at energy densities of 3 J/cm2, 5 J/cm2, 7 J/cm2. As a result, Candida albicans showed a killing rate of 91.5% at an energy density of 7 J/cm2. This study found that photodynamic therapy using a Radachlorin and diode laser was effective for the inhibition of Candida albicans.

Photodynamic Inactivation of Staphylococcus Aureus Based on Dose of Laser Transmission (레이저 투과 선량에 따른 황색포도상구균의 광역학적 비활성화)

  • Koo, Bon-Yeoul;Kim, Ji-Won
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.165-170
    • /
    • 2022
  • Staphylococcus aureus is a major pathogen that causes clinical infections in humans and can also cause massively colonized in lesion skin, particularly in atopic dermatitis patients. This study investigated the effects of photodynamic inactivation with radachlorin and diode laser irradiation on the viability of S. aureus in vitro and assessed the effects of the dose of laser transmission. In the PDI group, 5 𝜇L of S. aureus suspension and 5 𝜇L of radachlorin were inoculated in a 55 mm petri dish (63.6 cm2). The samples were placed in a 37° incubator for 30 min and then irradiated with light (660 nm diode laser). After laser irradiation, the cells were stored for 24 h at 37° in an incubator with 5% CO2, and the number of colonies was counted. All CFU/mL of S. aureus were reduced by diode laser in the presence of radachlorin, with a killing rate of 87.9% at an energy dose of 9 J/cm2. This study contribute to treat colonized with S. aureus in atopic dermatitis patients and wound infections by providing information on the optimal dose of laser transmission using PDI to eliminate S. aureus.