• Title/Summary/Keyword: 딥러닝 융합연구

Search Result 451, Processing Time 0.024 seconds

A study to Improve the Image Quality of Low-quality Public CCTV (저화질 공공 CCTV의 영상 화질 개선 방안 연구)

  • Young-Woo Kwon;Sung-hyun Baek;Bo-Soon Kim;Sung-Hoon Oh;Young-Jun Jeon;Seok-Chan Jeong
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.125-137
    • /
    • 2021
  • The number of CCTV installed in Korea is over 1.3 million, increasing by more than 15% annually. However, due to the limited budget compared to the installation demand, the infrastructure is composed of 500,000 pixel low-quality CCTV, and there is a limits on identification of objects in the video. Public CCTV has high utility in various fields such as crime prevention, traffic information collection (control), facility management, and fire prevention. Especially, since installed in high height, it works as its role in solving diverse crime and is in increasing trend. However, the current public CCTV field is operated with potential problems such as inability to identify due to environmental factors such as fog, snow, and rain, and the low-quality of collected images due to the installation of low-quality CCTV. Therefore, in this study, in order to remove the typical low-quality elements of public CCTV, the method of attenuating scattered light in the image caused by dust, water droplets, fog, etc and algorithm application method which uses deep-learning algorithm to improve input video into videos over quality over 4K are suggested.

Development of machine learning model for reefer container failure determination and cause analysis with unbalanced data (불균형 데이터를 갖는 냉동 컨테이너 고장 판별 및 원인 분석을 위한 기계학습 모형 개발)

  • Lee, Huiwon;Park, Sungho;Lee, Seunghyun;Lee, Seungjae;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The failure of the reefer container causes a great loss of cost, but the current reefer container alarm system is inefficient. Existing studies using simulation data of refrigeration systems exist, but studies using actual operation data of refrigeration containers are lacking. Therefore, this study classified the causes of failure using actual refrigerated container operation data. Data imbalance occurred in the actual data, and the data imbalance problem was solved by comparing the logistic regression analysis with ENN-SMOTE and class weight with the 2-stage algorithm developed in this study. The 2-stage algorithm uses XGboost, LGBoost, and DNN to classify faults and normalities in the first step, and to classify the causes of faults in the second step. The model using LGBoost in the 2-stage algorithm was the best with 99.16% accuracy. This study proposes a final model using a two-stage algorithm to solve data imbalance, which is thought to be applicable to other industries.

A Study on the Prediction of Cabbage Price Using Ensemble Voting Techniques (앙상블 Voting 기법을 활용한 배추 가격 예측에 관한 연구)

  • Lee, Chang-Min;Song, Sung-Kwang;Chung, Sung-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Vegetables such as cabbage are greatly affected by natural disasters, so price fluctuations increase due to disasters such as heavy rain and disease, which affects the farm economy. Various efforts have been made to predict the price of agricultural products to solve this problem, but it is difficult to predict extreme price prediction fluctuations. In this study, cabbage prices were analyzed using the ensemble Voting technique, a method of determining the final prediction results through various classifiers by combining a single classifier. In addition, the results were compared with LSTM, a time series analysis method, and XGBoost and RandomForest, a boosting technique. Daily data was used for price data, and weather information and price index that affect cabbage prices were used. As a result of the study, the RMSE value showing the difference between the actual value and the predicted value is about 236. It is expected that this study can be used to select other time series analysis research models such as predicting agricultural product prices

A Travel Speed Prediction Model for Incident Detection based on Traffic CCTV (돌발상황 검지를 위한 교통 CCTV 기반 통행속도 추정 모델)

  • Ki, Yong-Kul;Kim, Yong-Ho
    • Journal of Industrial Convergence
    • /
    • v.18 no.3
    • /
    • pp.53-61
    • /
    • 2020
  • Travel speed is an important parameter for measuring road traffic and incident detection system. In this paper I suggests a model developed for estimating reliable and accurate average roadway link travel speeds using image processing sensor. This method extracts the vehicles from the video image from CCTV, tracks the moving vehicles using deep neural network, and extracts traffic information such as link travel speeds and volume. The algorithm estimates link travel speeds using a robust data-fusion procedure to provide accurate link travel speeds and traffic information to the public. In the field tests, the new model performed better than existing methods.

A Study on the Detection Method of Lane Based on Deep Learning for Autonomous Driving (자율주행을 위한 딥러닝 기반의 차선 검출 방법에 관한 연구)

  • Park, Seung-Jun;Han, Sang-Yong;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.979-987
    • /
    • 2020
  • This study used the Deep Learning models used in previous studies, we selected the basic model. The selected model was selected as ZFNet among ZFNet, Googlenet and ResNet, and the object was detected using a ZFNet based FRCNN. In order to reduce the detection error rate of FRCNN, location of four types of objects detected inside the image was designed by SVM classifier and location-based filtering was applied. As simulation results, it showed similar performance to the lane marking classification method with conventional 경계 detection, with an average accuracy of about 88.8%. In addition, studies using the Linear-parabolic Model showed a processing speed of 165.65ms with a minimum resolution of 600 × 800, but in this study, the resolution was treated at about 33ms with an input resolution image of 1280 × 960, so it was possible to classify lane marking at a faster rate than the previous study by CNN-based End to End method.

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

Implementation of A System to Prevent Drowsy Driving Using Google ML Kit (구글 ML Kit 을 이용한 졸음 운전 예방 시스템 구현)

  • Park, Jin-A;Lim, Jun-Hwan;Park, Su-Jin;Noh, Giseop
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.574-576
    • /
    • 2021
  • 본 논문에서는 딥러닝을 이용한 구글 ML Kit 를 이용하여 직접적이고 효과적인 졸음운전 예방기술을 구현하였다. 본 연구에서는 눈 상태를 인식하여 졸음을 감지하고 경보음을 발생시켜 교통사고 안전성 향상을 위한 방안을 제안하고 구현하였다. 또한, 정부 공공데이터 활용을 통해 성능테스트를 진행하여 시스템의 성능을 검증하였다.

A Research on Re-examining Discriminator Design Space for Performance Improvement of ESRGAN (ESRGAN의 성능 향상을 위한 판별자 설계 공간 재검토에 관한 연구)

  • Sung-Wook Park;Jun-Yeong Kim;Jun Park;Se-Hoon Jung;Chun-Bo Sim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.513-514
    • /
    • 2023
  • 초해상은 저해상도의 영상을 고해상도 영상으로 합성하는 기술이다. 이 기술에 딥러닝이 적용되어, 2014년에는 SRCNN(Super Resolution Convolutional Neural Network) 모델이 발표됐다. 이후에는 SRCAE(Super Resolution Convolutional Autoencoders)와 GAN(Generative Adversarial Networks)을 기반으로 한 SRGAN(Super Resolution Generative Adversarial Networks) 등, SRCNN의 성능을 능가하는 모델들이 발표됐다. ESRGAN(Enhanced Super Resolution Generative Adversarial Networks)은 SRGAN 모델의 성능을 개선했지만, 완벽한 성능을 내지 못하는 문제점이 있다. 이에 본 논문에서는 판별자(Discriminator) 구조를 변경하여 ESRGAN의 성능을 개선한다. 실험 결과, 제안하는 모델이 ESRGAN보다 더 높은 성능을 보일 것으로 기대된다.

Estimation of Concrete Porosity Using Image Segmentation Method (영상 분할기법을 활용한 콘크리트의 공극률 평가 )

  • Hyun-Joon Jeong;Hoseong Jeong;Jae Hyun Kim;Kang-Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 2023
  • In this study, an image segmentation model that can evaluate surface porosity based on concrete surface images was derived. Three types of concrete specimens with different water-cement ratios (w/c = 54, 35, and 30%) were prepared, and 2,729 surface images were obtained using an optical microscope. Benchmarking tests, parameter optimization, and final model derivation were performed using the surface images, and an image segmentation model with 97% verification accuracy was obtained. The model was verified by comparing the porosity obtained from the model and X-Ray Microscope (XRM). The model provided similar porosity to that of XRM for the specimens with a high water-cement ratio, but tended to give lower porosity for specimens with a low water-cement ratio.

Quality Evaluation of Chest X-ray Open Dataset through Pixel Value Analysis by Region (영역별 화소값 분석을 통한 흉부 X선 오픈 데이터셋 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Sun, Joo-Sung;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.614-617
    • /
    • 2022
  • 인공지능의 발전으로 의료영상 분야에서 딥러닝 기반 질병 진단 연구가 활발하다. 그러나 모델 개발 시 학습 데이터의 개수와 품질은 매우 중요한데, 의료 분야 특성상 접근 가능한 데이터셋이 적으며 오픈 데이터셋은 서로 다른 기관에서 배포되거나 웹상에서 수집된 것으로 진단에 적합한 품질을 기대하기 어렵다. 또한, 기존 연구는 데이터셋이 학습에 적합한지에 대한 품질검증 없이 사용한다. 따라서 본 논문에서는 임상에서 사용하는 화질 평가 요소에 근거를 두고 영역별 화소값 분석을 통한 흉부 X선 영상 품질 평가 기법을 제안한다. 오픈 데이터셋 JSRT, Chest14와 국내 A 병원 데이터셋 AUH에 제안한 기법을 적용한 결과 민감도 91.5%, 특이도 96.1%의 우수한 성능을 확인하였다.