• Title/Summary/Keyword: 딥러닝 융합연구

Search Result 451, Processing Time 0.026 seconds

A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image (초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2018
  • In the field of biometric security such as face and iris recognition, it is essential to extract facial features such as eyes and lips. In this paper, we have studied a method of detecting eye and lip region in face image using faster R-CNN. The faster R-CNN is an object detection method using deep running and is well known to have superior performance compared to the conventional feature-based method. In this paper, feature maps are extracted by applying convolution, linear rectification process, and max pooling process to facial images in order. The RPN(region proposal network) is learned using the feature map to detect the region proposal. Then, eye and lip detector are learned by using the region proposal and feature map. In order to examine the performance of the proposed method, we experimented with 800 face images of Korean men and women. We used 480 images for the learning phase and 320 images for the test one. Computer simulation showed that the average precision of eye and lip region detection for 50 epoch cases is 97.7% and 91.0%, respectively.

AR Tourism Service Framework Using YOLOv3 Object Detection (YOLOv3 객체 검출을 이용한 AR 관광 서비스 프레임워크)

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Kye-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.195-200
    • /
    • 2021
  • With the development of transportation and mobiles demand for tourism travel is increasing and related industries are also developing significantly. The combination of augmented reality and tourism contents one of the areas of digital media technology, is also actively being studied, and artificial intelligence is already combined with the tourism industry in various directions, enriching tourists' travel experiences. In this paper, we propose a system that scans miniature models produced by reducing tourist areas, finds the relevant tourist sites based on models learned using deep learning in advance, and provides relevant information and 3D models as AR services. Because model learning and object detection are carried out using YOLOv3 neural networks, one of various deep learning neural networks, object detection can be performed at a fast rate to provide real-time service.

Verification of educational goal of reading area in Korean SAT through natural language processing techniques (대학수학능력시험 독서 영역의 교육 목표를 위한 자연어처리 기법을 통한 검증)

  • Lee, Soomin;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • The major educational goal of reading part, which occupies important portion in Korean language in Korean SAT, is to evaluated whether a given text can be fully understood. Therefore given questions in the exam must be able to solely solvable by given text. In this paper we developed a datatset based on Korean SAT's reading part in order to evaluate whether a deep learning language model can classify if the given question is true or false, which is a binary classification task in NLP. In result, by applying language model solely according to the passages in the dataset, we were able to acquire better performance than 59.2% in F1 score for human performance in most of language models, that KoELECTRA scored 62.49% in our experiment. Also we proved that structural limit of language models can be eased by adjusting data preprocess.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

Semantic and Syntax Paraphrase Text Generation (유사구조 및 유사의미 문장 생성 방법)

  • Seo, Hyein;Jung, Sangkeun;Jung, Jeesu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.162-166
    • /
    • 2020
  • 자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.

  • PDF

Topophilia Convergence Science Education for Enhancing Learning Capabilities in the Age of Artificial Intelligence Based on the Case of Challenge Match Lee Sedol and AlphaGo (알파고와 이세돌의 챌린지 매치에서 분석된 인공지능 시대의 학습자 역량을 위한 토포필리아 융합과학 교육)

  • Yoon, Ma-Byong;Lee, Jong-Hak;Baek, Je-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.123-131
    • /
    • 2016
  • In this paper, we discussed learner's capability enhancement education suitable for the age of artificial intelligence (AI) using game analysis and archival research based on the 2016 Google Deepmind Challenge match between AI that possessed the finest deep neural networks and the master Baduk player that represented the best of the human minds. AlphaGo was a brilliant move that transcended the conventional wisdom of Baduk and introduced a new paradigm of Baduk. Lee Sedol defeated AlphaGo via the 'divine move and Great idea' that even AlphaGo could not have calculated. This was the triumph of human intuition and insights, which are deeply embedded in human nature as well as human courage and strength. Convergence science education that cultivates student abilities that can help them control machines in the age of AI must be in the direction of developing diverse human insights and positive spirits embedded in human nature not possessed by AI via implementing hearts-on experience and topophilia education obtained from the nature.

BERT-based Classification Model for Korean Documents (한국어 기술문서 분석을 위한 BERT 기반의 분류모델)

  • Hwang, Sangheum;Kim, Dohyun
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.203-214
    • /
    • 2020
  • It is necessary to classify technical documents such as patents, R&D project reports in order to understand the trends of technology convergence and interdisciplinary joint research, technology development and so on. Text mining techniques have been mainly used to classify these technical documents. However, in the case of classifying technical documents by text mining algorithms, there is a disadvantage that the features representing technical documents must be directly extracted. In this study, we propose a BERT-based document classification model to automatically extract document features from text information of national R&D projects and to classify them. Then, we verify the applicability and performance of the proposed model for classifying documents.

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

A study on performance improvement considering the balance between corpus in Neural Machine Translation (인공신경망 기계번역에서 말뭉치 간의 균형성을 고려한 성능 향상 연구)

  • Park, Chanjun;Park, Kinam;Moon, Hyeonseok;Eo, Sugyeong;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2021
  • Recent deep learning-based natural language processing studies are conducting research to improve performance by training large amounts of data from various sources together. However, there is a possibility that the methodology of learning by combining data from various sources into one may prevent performance improvement. In the case of machine translation, data deviation occurs due to differences in translation(liberal, literal), style(colloquial, written, formal, etc.), domains, etc. Combining these corpora into one for learning can adversely affect performance. In this paper, we propose a new Corpus Weight Balance(CWB) method that considers the balance between parallel corpora in machine translation. As a result of the experiment, the model trained with balanced corpus showed better performance than the existing model. In addition, we propose an additional corpus construction process that enables coexistence with the human translation market, which can build high-quality parallel corpus even with a monolingual corpus.