• 제목/요약/키워드: 딥러닝 애플리케이션

검색결과 60건 처리시간 0.029초

조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구 (Artificial intelligence application UX/UI study for language learning of children with articulation disorder)

  • 양은미;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.174-176
    • /
    • 2022
  • 본 논문에서는인공지능(AI; Artificial Intelligence)알고리즘을 활용한 조음 장애 아동들의 '개인화된 맞춤형 학습' 모바일 애플리케이션을 제시한다. 조음과 관련된 빅데이터(Big Data)를 수집-정제-가공한 데이터 셋(Data Set)으로 학습자의 조음 상황 및 정도를 분석, 판단, 예측한다. 특히, 인공지능 활용 시 기존 애플리케이션에 비해 어떻게 개선되고 고도화할수 있는지를 UX/UI(GUI) 측면에서 바라보고 프로토타입 모델을 설계해 보았다. 지금까지 시각적 경험에 많이 치중해 있었다면, 이제는 데이터를 어떻게 가공하여 사용자에게 UX/UI(GUI) 경험을 제공할 수 있는지가 중요한 시점이다. 제시한 모바일 애플리케이션의 UX/UI(GUI)는 딥러닝(Deep Learning)의 CRNN(Convolution Recurrent Neural Network)과 Auto Encoder GPT-3 (Generative Pretrained Transformer)를 활용하여 학습자의 조음 정도와 상황에 맞게 제공하고자 하였다. 인공지능 알고리즘의 활용은 조음 장애 아동들에게 완성도 높은 학습환경을 제공하여 학습효과를 높일 수 있를 것이다. '개인화된 맞춤형 학습'으로 조음의 완성도를 높여서, 대화에 대한 두려움이나 불편함을 갖지 않길 바란다.

  • PDF

곡면 용기에 표시된 성분표 자동 인식을 위한 인공지능 기반 스마트폰 애플리케이션 (Deep-Learning-based smartphone application for automatic recognition of ingredients on curved containers)

  • 정희용;신춘성
    • 한국산업정보학회논문지
    • /
    • 제28권6호
    • /
    • pp.29-43
    • /
    • 2023
  • 소비자는 본인의 건강을 위해서 화장품 및 식품의 성분을 보고 알레르기 유발이나, 주의 성분이 포함되어 있는지 여부를 확인 후 구매를 해야 하지만, 실상은 포장지나 패키징 용기에서 표기가 작고 상세 성분 표기를 찾기 어려우며 바쁜 일상 가운데 일일이 확인하는 과정이 소홀해지기 쉽다. 이에 본 논문은 소비자에게 용기에 부착된 성분을 보다 알기 쉽게 전달하도록 곡면 용기에 표시된 배합 성분표를 자동으로 인식하기 위한 인공지능 기반 스마트폰 애플리케이션을 제안한다. 제안한 스마트폰 기반 성분표 자동인식 어플리케이션은 곡면 용기에 표시된 성분표를 인식할 수 있도록 텍스트 추출 후 원근변환을 통해 인식을 정확도 95% 달성하였다. 또한, 성분명이 곡면에 표시되기 때문에 변형되거나 길이가 길어서 줄 바꿈이 있는 텍스트를 위해 텍스트영역의 경계영역과 위치를 계산하여 처리하였다. 이를 통해 제안한 스마트폰 어플리케이션은 내장된 카메라를 통해 용기에 부착된 성분표 영상을 획득한 뒤, 성분과 관련된 텍스트를 발견하고 인식하여 배합제한성분 정보를 추출하도록 하였다. 마지막으로 다양한 테스트를 통하여 개발한 애플리케이션으로 원통형 곡면 용기에 담긴 화장품의 성분표 인식에 문제가 없다는 것을 검증하였다.

영상처리와 딥러닝을 이용한 식단 관리 및 추천 애플리케이션 설계 및 구현 (Diet Management and Recommended Applications Using Image Processing and Deep Learning)

  • 김현지;이주영;정연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.717-720
    • /
    • 2020
  • '100 세 시대'라는 말이 오가는 시대가 도래했다. 길어진 수명에 맞춰 건강한 식단 및 식습관에 대한 관심 또한 증가하였다. 그러나 혼자서 식단에 대한 정보를 찾고, 기록하고 영양성분을 관리하는 것에는 한계가 있다. 이에 본 팀은 손쉽게 찍어 올린 식단의 사진만으로 사용자의 식단을 분석하고 관리해주며 식습관을 교정해주는 애플리케이션을 설계 및 구현하여 제안한다.

GAN을 활용한 가상 피팅 서비스 개발 연구 (A Study on Virtual Fitting Service Using GAN)

  • 박상희;노주영;송상연;신승화;김기천
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.976-979
    • /
    • 2019
  • 사회가 발전함에 따라 사람들의 의류 소비 패턴 매장 매출보다 모바일 쇼핑몰 매출이 늘고 있다. 스마트 뱅킹, 쇼핑몰 애플리케이션 등 모바일 서비스가 일상생활로 스며들면서 모바일로 의류를 구매하는 것은 쉬워졌다. 하지만, 온라인이라는 특성상 옷을 택배로 받고, 입어야 옷이 어울리는 지 아닌 지를 판단할 수 있다는 고질적인 문제점이 있다. 이러한 문제점은 반품 또는 교환으로 이루어지고 이는 쇼핑몰과 소비자 모두에게 굉장히 낭비되는 비용이다. 본 논문에서는 사람의 사진에 옷을 입힌 사진을 제공함으로써, 사람이 옷을 실제로 입지 않더라도 그 때의 fit 을 제공하고자 한다. 이때, 단순한 합성이 아니라, 딥러닝 중 GAN(Generative Adversarial Network)를 사용해 기존 기술의 문제점을 해결하고자 한다.

CycleGAN을 이용한 인터랙티브 웹페이지 (Interactive Web using CycleGAN)

  • 김지원;정해정;김동호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.280-282
    • /
    • 2021
  • 최근에 딥러닝 기술인 GAN (Generative Adversarial Networks) 연구는 Image-to-Image translation 분야에서 활발하게 이뤄지고 있다. 이러한 기술을 바탕으로 사용자에게 편의와 재미를 제공하는 서비스가 애플리케이션 및 웹사이트의 형태로 개발되고 있다. 이에 본 논문은 CycleGAN 모델을 사용하여 이미지를 변환하고, 이를 인터랙티브 웹페이지를 통해 사용자와 실시간으로 상호작용하며 결과 이미지를 제공할 수 있는 방법을 연구하였다. 모델을 구현하기 위해 Tensorflow 및 Keras를 사용하였고, Django와 HTML5, CSS, JavaScript를 사용하여 웹사이트를 제작하였다.

  • PDF

Memory wall 을 극복하기 위한 PIM 가속 기술에 대한 조망 (A Survey on PIM Acceleration Technology to Overcome Memory Wall Problem)

  • 정헌희;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.66-68
    • /
    • 2022
  • 활용도가 높아지고 있는 최근의 딥러닝 애플리케이션 등을 사용하기 위해서 기존의 CPU 구조로는 한계가 있어 GPU, TPU 등의 하드웨어로 가속하려는 노력이 있어왔다. 하지만 물리적인 제약으로 인해 메모리 대역폭에 한계가 있으며, 이를 뛰어넘기 위해 메모리 안에서 직접 연산을 수행하는 Processing-in-Memory 기술이 떠오르고 있다. 본 논문은 PIM 기술을 사용할 때의 불이익을 감수하면서 장점을 최대한 활용하는 방법들에 관해서 서술하였다.

고양이 결막염 진단을 위한 전이학습(Transfer learning) 기반의 AI를 이용한 웹 어플리케이션 개발 (Development of a Web Application Using AI Based on Transfer Learning for the Diagnosis of Cat Conjunctivitis)

  • 김다인;문연우;정주현;조민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.934-935
    • /
    • 2023
  • 반려묘 수가 늘어나는 현대 사회에서 동물 의료 낙후 지역의 보호자는 고양이의 정확한 건강 상태를 파악하기 어렵다. 본 논문에서는 고양이가 가장 흔하게 걸리는 질병인 '결막염'을 비대면으로 진단하고자, 전이학습(Transfer Learning) 기반의 딥러닝 모델을 이용한 웹 애플리케이션을 개발 및 배포하였다. 이를 통해 고양이 결막염 발병 여부 조기 진단 및 치료비 절감, 반려묘 보호자의 편의성 증대 및 동물 의료 서비스의 지역 편차를 줄이는데 기여하고자 한다.

다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템 (Deep Learning Based On-Device Augmented Reality System using Multiple Images)

  • 정태현;박인규
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.341-350
    • /
    • 2022
  • 본 논문은 온디바이스 환경에서 다중 시점 영상을 입력 받아 객체를 증강하고, 현실 공간에 의한 가려짐을 구현하는 딥러닝 기반의 증강현실 시스템을 제안한다. 이는 세부적으로 카메라 자세 추정, 깊이 추정, 객체 증강 구현의 세 기술적 단계로 나눠지며 각 기법은 온디바이스 환경에서의 최적화를 위해 다양한 모바일 프레임워크를 사용한다. 카메라 자세 추정 단계에서는 많은 계산량을 필요로 하는 특징 추출 알고리즘을 GPU 병렬처리 프레임워크인 OpenCL을 통해 가속하여 사용하며, 깊이 영상 추론 단계에서는 모바일 심층신경망 프레임워크 TensorFlow Lite를 사용하여 가속화된 단안, 다중 영상 기반의 깊이 영상 추론을 수행한다. 마지막으로 모바일 그래픽스 프레임워크 OpenGL ES를 활용해 객체 증강 및 가려짐을 구현한다. 제시하는 증강현실 시스템은 안드로이드 환경에서 GUI를 갖춘 애플리케이션으로 구현되며 모바일과 PC 환경에서의 동작 정확도 및 처리 시간을 평가한다.

Attention-Based Heart Rate Estimation using MobilenetV3

  • Yeo-Chan Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.1-7
    • /
    • 2023
  • 딥러닝의 발전은 의료 분야에서도 다양한 응용을 가능하게 하고 있으며 이러한 애플리케이션 중에 심박수 측정은 개인의 건강을 관리하기 위한 필수적인 아이템이라 할 수 있다. 광혈류 측정을 이용한 기존 방법의 경우 스마트워치 같은 장비의 착용이 필수적이다. 그러나 최근 딥러닝 기술의 발전은 비침습식으로 원격에서 사용자의 얼굴 이미지를 분석하여 심박수를 높은 성능으로 측정가능하게 한다. 본 연구에서는 모바일 환경에서 사용 가능한 경량화된 심박수 추정 방법론을 제안한다. 이 방법론은 2D 컨볼루션에 기반한 특화된 2채널 네트워크 구조를 사용하여, 혈류와 근육 수축으로 인한 얼굴의 미세한 움직임과 색상 변화를 고려한다. 제안하는 네트워크 구조는 이미지 특성을 분석하는 인코더와 혈류량 파동을 예측하는 회귀 레이어로 구성되어있다. 이러한 복합적인 특성을 동시에 분석함으로써, 제한된 컴퓨팅 리소스를 가진 환경에서도 심박수를 정확하게 추정할 수 있다. 이 연구의 접근 방식은 침습적인 기술 없이도 심박수를 효과적으로 모니터링 할 수 있는 새로운 경로를 제공할 것으로 예상한다.

딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구 (Crosswalk Detection Model for Visually impaired Using Deep Learning)

  • 김준수;이혁
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2024
  • 복잡한 도시 환경에서 횡단보도는 보행자의 안전한 이동을 위해 중요한 역할을 한다. 하지만 시각 장애인에게는 횡단보도가 큰 위험 요소가 될 수 있다. 안전한 보행을 위한 점자 블록이나 음향 신호등과 같은 보조 시설들이 존재하지만, 부실한 관리로 인하여 때로는 오히려 안전을 저해하는 요소로 작용할 수 있다. 본 논문에서는 시각 장애인의 보행 보조를 위한 애플리케이션에 활용할 수 있는 딥러닝 기반 실시간 횡단보도 탐지 모델에 정확도 향상을 위한 방법을 제안한다. 횡단보도 이미지의 흰색 줄이 도로 표면과 대조를 이루는 특성을 활용하여 이미지를 이진화하고, 이를 통해 횡단보도를 더 잘 인식할 수 있게 하고 횡단보도 전체와 중간 부분을 각각 학습한 두 가지 모델을 활용하여 횡단보도의 위치를 더 정확하게 파악할 수 있도록 하였다. 또한 횡단보도를 인식하는 경계 상자를 전체와 부분의 두 단계로 생성하여 정확도를 높이고자 하였다. 이러한 방법을 통해 횡단보도 횡단 영상에서 RGB 이미지 학습에서 탐지 모델이 탐지하지 못한 프레임들을 추가로 탐지할 수 있었다.