• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.027 seconds

Using Deep Learning for automated classification of wall subtypes for semantic integrity checking of Building Information Models (딥러닝 기반 BIM(Building Information Modeling) 벽체 하위 유형 자동 분류 통한 정합성 검증에 관한 연구)

  • Jung, Rae-Kyu;Koo, Bon-Sang;Yu, Young-Su
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.31-40
    • /
    • 2019
  • With Building Information Modeling(BIM) becoming the de facto standard for data sharing in the AEC industry, additional needs have increased to ensure the data integrity of BIM models themselves. Although the Industry Foundation Classes provide an open and neutral data format, its generalized schema leaves it open to data loss and misclassifications This research applied deep learning to automatically classify BIM elements and thus check the integrity of BIM-to-IFC mappings. Multi-view CNN(MVCC) and PointNet, which are two deep learning models customized to learn and classify in 3 dimensional non-euclidean spaces, were used. The analysis was restricted to classifying subtypes of architectural walls. MVCNN resulted in the highest performance, with ACC and F1 score of 0.95 and 0.94. MVCNN unitizes images from multiple perspectives of an element, and was thus able to learn the nuanced differences of wall subtypes. PointNet, on the other hand, lost many of the detailed features as it uses a sample of the point clouds and perceived only the 'skeleton' of the given walls.

Development of visitor counter system for disaster situations and marketing based on real-time object recognition technology (재난상황과 마케팅을 위한 실시간 객체인식 기술기반 출입자 카운터시스템 개발)

  • Kim, Young-gwon;Jeong, Jae-hoon;Kim, Jae-hyeon;Kang, Myeung-jin;Kang, Min-sung;Ju, Hui-je;Jang, Woo-hyun;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.187-188
    • /
    • 2021
  • 최근 COVID19 상황에서 생활 속 거리두기가 강조되면서 관광지나 다중이용시설 등의 이용객 수와 밀집도를 파악하는 것이 중요해지고 있다. 따라서, CCTV 영상을 활용하여 저렴한 비용으로 다중이용시설의 출입자수에 대한 정보를 실시간으로 모니터링할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 활용한 출입자의 수와 동선을 측정하여 출입자에 대한 통계정보를 웹브라우저를 통해 제공하는 시스템을 개발하였다. 실시간 객체인식기술인 YOLOv4와 YOLOv4-tiny 알고리즘을 Nvidia사의 Jetson AGX Xavier 와 데스크톱PC에 적용하여 각 알고리즘의 FPS와 객체 인식률을 비교 분석 하여 알고리즘을 적용하였다.

  • PDF

인공지능 기술을 활용한 사용자 상태 모니터링 데이터 분석

  • Park, Cheol-Su;Jo, Tae-Heum;Seok, U-Jun;Hwang, Bo-Seon
    • Broadcasting and Media Magazine
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2020
  • 사용자의 건강 및 인지 상태 모니터링을 위해 다양한 생체신호를 측정 및 분석하여 예측할 수 있다. 특히 최근 상용화되고 있는 웨어러블 센서 시스템을 이용하여 손쉽게 심전도나 액티그래피 움직임 정보를 사용자로부터 일상생활 중 장시간 얻어낼 수 있다. 그러나 사용자 상태 예측을 위한 기존 생체신호 분석 모델들은 생체신호 데이터의 성질을 최대한 반영하지 못하여, 본 논문에서는 최근 급속도로 발전하고 있는 인공지능 딥러닝 기술을 이용한 극복 방안에 대해 소개한다. 상태 모니터링의 구체적인 응용 예로 사용자 스트레스 및 수면 모니터링 분석에 생체신호 데이터 기반 딥러닝 기술을 적용하여 기존 모델보다 높은 성능을 보여주고 있다.

A Study on Automatic Detection and Extraction of Unstructured Security Threat Information using Deep Learning (딥러닝 기술을 이용한 비정형 보안 위협정보 자동 탐지 및 추출 기술 연구)

  • Hur, YunA;Kim, Gyeongmin;Lee, Chanhee;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.584-586
    • /
    • 2018
  • 사이버 공격 기법이 다양해지고 지능화됨에 따라 침해사고 발생이 증가하고 있으며, 그에 따른 피해도 확산되고 있다. 이에 따라 보안 기업들은 다양한 침해사고를 파악하고 빠르게 대처하기 위하여 위협정보를 정리한 인텔리전스 리포트를 배포하고 있다. 하지만 인텔리전스 리포트의 형식이 정형화되어 있지 않고 점점 증가하고 있어, 인텔리전스 리포트를 수작업을 통해 분류하기 힘들다는 문제점이 있다. 이와 같은 문제를 해결하기 위해 본 논문에서는 개체명 인식 시스템을 활용하여 비정형 인텔리전스 리포트에서 위협정보를 자동으로 탐지하고 추출할 수 있는 모델을 제안한다.

  • PDF

A study on classification of hooking headlines using deep learning techniques (딥러닝 기법을 이용한 낚시성 기사 제목 분류에 대한 연구)

  • Choi, Yong-Seok;Choi, Han-Na;Shin, Ji-Hye;Jeong, Chang-Min;An, Jung-Yeon;Yoo, Chae-Young;Im, Chae-Eun;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.15-17
    • /
    • 2015
  • 본 논문은 낚시성 기사 제목과 비낚시성 기사 제목을 판별하기 위한 시스템을 제시한다. 서포트 벡터 머신(SVM)을 이용하여 기사 제목을 분류하며, 분류하는 기준은 딥러닝 기법중의 하나인 워드임베딩(Word Embedding), 군집화 알고리즘 중 하나인 K 평균 알고리즘(K-means)을 이용한다. 자질로서 기사 제목의 단어를 사용하였으며, 정확도가 83.78%이다. 결론적으로 낚시성 기사 제목에는 낚시를 유도하는 특별한 단어들이 존재함을 알 수 있다.

  • PDF

A Trend Analysis of ECG Classification based on Deep Learning (딥러닝기반 심전도 분류의 국내외 동향분석)

  • Byeon, Yeong-Hyeon;Kwak, Keun-Chang
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.246-249
    • /
    • 2019
  • 심전도는 심장운동으로 미세하게 변하는 심장의 전위차를 신체외부의 피부에서 측정한 것으로 최근 의료, 금융, 보안, 오락 등 서비스에서 기존의 생체신호시스템의 대안으로 많은 연구가 되고 있다. 기존 서비스로서 개인인식, 개인인증, 부정맥인식, 행동인식, 심방세동 검출 등은 근본적으로 심전도를 분류하는 기술이고 또한 최근 딥러닝이 여러 분야에서 두드러진 성능들이 보고되었기 때문에 딥러닝을 이용한 심전도 분석도 많은 연구가 되고 있다. 따라서 본 논문은 딥러닝기반 심전도 분류의 국내외 동향분석을 한다.

A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm (딥러닝 알고리즘 기반 탄산화 진행 예측에서 활성화 함수 적용에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.60-61
    • /
    • 2019
  • Concrete carbonation is one of the factors that reduce the durability of concrete. In modern times, due to industrialization, the carbon dioxide concentration in the atmosphere is increasing, and the impact of carbonation is increasing. So, it is important to understand the carbonation resistance according to the concrete compounding to secure the concrete durability life. In this study, we want to predict the concrete carbonation velocity coefficient, which is an indicator of the carbonation resistance of concrete, through the deep learning algorithm, and to find the activation function suitable for the prediction of carbonation rate coefficient as a process to determine the learning accuracy through the deep learning algorithm. In the scope of this study, using the ReLU function showed better accuracy than using other activation functions.

  • PDF

Comparison of CNN-based models for apple pest classification (사과 병해충 분류를 위한 CNN 기반 모델 비교)

  • Lee, Su-min;Lee, Yu-hyeon;Lee, Eun-sol;Han, Se-yun
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.460-463
    • /
    • 2022
  • 세계에서 가장 중요한 온대 과일 작물 중 하나인 사과의 생산성과 품질은 병해충 여부에 큰 영향을 받는다. 이를 진단하기 위해서는 효율적이고 많은 전문 지식과 상당한 시간이 필요하다. 그러므로 이를 해결하기 위해 효율적이고 정확하게 다양한 병해충을 진단하는 시스템이 필요하다. 본 논문에서는 이미지 분석에 큰 효율을 보인 딥러닝 기반 CNN 들을 비교 분석하여 사과의 병해충 여부를 판별하고 최적의 모델을 제시한다. 딥러닝 기반 CNN 구조를 가진 AlexNet, VGGNet, Inception-ResNet-v2, DenseNet 을 채택해 사과 병해충 분류 성능 평가를 진행했다. 그 결과 DenseNet 이 가장 우수한 성능을 보여주었다.

Drowsy driving and seat belt detection using multiple deep learning networks (딥러닝 다중 네트워크를 이용한 졸음 운전감지 및 안전벨트 착용 여부 확인)

  • Rhyou, SeYeol;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.75-77
    • /
    • 2021
  • 다양한 원인으로 매년 수많은 사람이 교통사고로 목숨을 잃거나 크게 다치곤 한다. 최근 교통사고 통계자료에 따르면 졸음운전으로 인한 교통사고가 음주운전이나, 과속보다도 높은 비중을 차지하고 있었다. 또한, 사고가 났을 때 안전벨트를 매지 않은 운전자나 동승객은 부상 정도가 훨씬 심각한 것으로 알려져 전 좌석에 안전벨트를 꼭 착용해야 하는 법도 제정되었다. 그런데도 많은 운전자 및 동승자가 안전벨트를 착용하지 않아 크게 부상을 당하는 사고는 줄지 않고 있다. 이러한 사고와 부상을 줄이기 위하여 본 논문에서는 다중 네트워크를 이용하여 운전자의 졸음 감지 및 운전자, 동승자의 안전벨트 착용 여부까지 실시간으로 판별하는 시스템을 설계하고 구현한다.

  • PDF

An Android Application to Guide Waste Sorting using a Deep Learning Image Classifier (딥러닝 사진 분류기를 활용한 분리배출 가이드 안드로이드 응용)

  • Kim, So-Yeong;Park, So-Hui;Kim, Min-Ji;Lee, Je-min;Kim, Hyung-Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.99-101
    • /
    • 2021
  • 쓰레기 대란, 환경파괴의 상황 속 실제 재활용 쓰레기 가운데 절반 정도만이 재활용되고 있다. 재활용률을 높이기 위해, 올바른 분리배출 방법을 쉽고 편하게 찾을 수 있는 방식이 필요하다. 본 논문에서는 올바른 분리수거를 통해 재활용률을 증진하기 위한 분리수거 분류 서비스를 제안한다. 본 논문은 ResNet-34 모델을 통해 안드로이드 카메라로 촬영한 이미지의 분리배출 클래스를 예측하고 그에 따른 분리배출 가이드를 제공하는 시스템을 설계하였다. 향후 연구에서는 모델의 정확도 향상을 위해 온디바이스와 서버 모델을 분리하고 모델의 개인 맞춤화를 진행할 예정이다.

  • PDF